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1 Introduction

Variational calculus is used to find extrema of functionals, which are mappings from a function
space to scalars. The problem is therefore not to simply find a point at which a function is an
extremum, but to solve for functions which extremize an expression. Some famous problems, like
the Brachistochrone problem or finding the shortest line between two points on a surface, can be
solved using calculus of variations. In physics, the method is typically used in classical mechanics,
but also has applications in, for example, field theory, general relativity, and quantum mechanics.

2 The Euler-Lagrange equation

The simplest problem of variational calculus is to determine a function y(x) that extremizes the
functional

I =

∫ xB

xA

f(x, y, y′)dx, (1)

given boundary conditions y(xA) = yA and y(xB) = yB at the fixed endpoints xA and xB . The
function f is assumed to be continuous and twice differentiable. To solve the problem, we will
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derive the differential equation y must obey to make I a stationary point. Two ways to obtain the
equation are presented here : the first involves using test functions, and the second uses functional
differentiation.

2.1 Derivation with test functions

Let us denote the function which extremizes I as y(x). We now define a family of test func-
tions y(x, ε) = y(x) + εη(x), where η is an arbitrary twice differentiable function that satisfies
η(xA) = η(xB) = 0 (see Fig. 1). The following conditions then hold for the test functions:

Figure 1: Example of solution
function y(x) (full line), and test
functions (dashed lines).

(i) y(xA, ε) = yA and y(xB , ε) = yB for all ε,

(ii) y(x, 0) = y(x),

(iii) y(x, ε) is twice differentiable for all ε.

We now define the function

I(ε) =

∫ xB

xA

f(x, y, y′)dx.

Clearly, when ε = 0, the test functions are replaced by y, the
extremizing function. By the definition of y, I(ε) therefore
has an extremum at ε = 0, and

dI(ε)

dε

∣∣∣∣
ε=0

= 0.

Using the chain rule, the derivative can be written as

dI(ε)

dε
=

∫ xB

xA

∂f

∂y

dy

dε
+
∂f

∂y′
dy′

dε
dx.

As the test functions are continuously differentiable (condition (iii)), the order of differentiation
in the second term can be changed:

dI(ε)

dε
=

∫ xB

xA

∂f

∂y

dy

dε
+
∂f

∂y′
d

dx

dy

dε
dx

=

∫ xB

xA

∂f

∂y

dy

dε
dx+

dy

dε

∂f

∂y′

∣∣∣∣xB

xA

−
∫ xB

xA

dy

dε

d

dx

∂f

∂y′
dx.

By condition (i), the ε–derivative of y at xA and xB is zero, so the second term is zero. The
expression then simplifies to

dI(ε)

dε
=

∫ xB

xA

dy

dε

[
∂f

∂y
− d

dx

∂f

∂y′

]
dx.

Setting ε = 0 is equivalent to setting y(x, ε) = y(x), y′(x, ε) = y′(x), and dy/dε = η(x). Then

dI(ε)

dε

∣∣∣∣
ε=0

=

∫ xB

xA

[
∂f

∂y
− d

dx

∂f

∂y′

]
η(x) dx = 0.

As this integral is zero for arbitrary η(x),

∂f

∂y
− d

dx

∂f

∂y′
= 0, (2)
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which is the Euler-Lagrange equation.

When f does not depend explicitly on x, the Euler-Lagrange equation simplifies considerably.
Assuming ∂f/∂x = 0,

d

dx

∂f

∂y′
− ∂f

∂y
= 0

⇒y′ d
dx

∂f

∂y′
− y′ ∂f

∂y
− ∂f

∂x
= y′

d

dx

∂f

∂y′
+ y′′

∂f

∂y′
− y′′ ∂f

∂y′
− y′ ∂f

∂y
− ∂f

∂x
= 0

⇒ d

dx

[
y′
∂f

∂y′
− f

]
= 0

⇒y′ ∂f
∂y′
− f = constant. (3)

This result is known as the Beltrami identity.

It should be noted that the assumptions made in the derivation limit the applicability of the
Euler-Lagrange equation. All functions were assumed to be continuous and differentiable, so if
the solution is actually discontinuous (which can be the case in e.g. control theory), a different
method should be used to solve the problem. Moreover, the condition ∂I(ε)/∂ε = 0 at ε = 0
is a necessary but not sufficient condition for an extremum: the solution of the Euler-Lagrange
equation can be a minimum, maximum, or inflection point. The nature of the solution is usually
clear from the nature of the problem, but if it is not, one has to study higher derivatives of I(ε).

2.2 Derivation with functional differentiation

Recall the definition of the derivative of a function

df

dx
= lim
ε→0

f(x+ ε)− f(x)
ε

.

The derivative is the rate of change of the function as an infinitesimal change is applied on x. The
functional derivative is defined in a similar way, where an infinitesimal change is applied on the
function taken as a parameter by the functional (see e.g. [3]) :

δF

δy(x)
= lim
ε→0

F [y(x′) + εδ(x− x′)]− F [y(x′)]
ε

, (4)

where x′ is a dummy variable integrated out in the functional.

The functional derivative of
I =

∫ xB

xA

f [x′, y(x′), y′(x′)] dx′

would contain derivatives of the Dirac delta. This is fine in our case because this only occurs
inside integrals, but we can interpret the Dirac delta function as the limit of a function, δ(x) =
limh→0+ gh(x). For example, we can choose gh(x) = exp[−x2/(4h)]/(2

√
πh). Then the functional

derivative of I can be written as

δI

δy(x)
= lim
ε→0

lim
h→0+

1

ε

∫ xB

xA

f [x′, y(x′) + εgh(x− x′), y′(x′) + εg′h(x− x′)]− f [x′, y, y′] dx′.

The Taylor expansion of the first term around ε = 0 is

f [x′, y+εgh(x−x′), y′+εg′h(x−x′)] = f [x′, y, y′]+ε
∂f [x′, y, y′]

∂y(x′)
gh(x−x′)+ε

∂f [x′, y, y′]

∂y′(x′)
g′h(x−x′)+O(ε2).
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When taking the limit ε→ 0, the terms of higher than first order in ε tend to zero, so

δI

δy(x)
= lim
h→0+

∫ xB

xA

∂f [x′, y(x′), y′(x′)]

∂y(x′)
gh(x− x′) +

∂f [x′, y(x′), y′(x′)]

∂y′(x′)
g′h(x− x′) dx′.

Integrating by parts and assuming x is in the interval (xA, xB), we obtain

δI

δy(x)
=
∂f [x, y(x), y′(x)]

∂y(x)
+ lim
h→0+

(
∂f [x′, y(x′), y′(x′)]

∂y′(x′)
gh(x− x′)

∣∣∣∣xB

x′=xA

−
∫ xB

xA

d

dx′
∂f [x′, y(x′), y′(x′)]

∂y′(x′)
gh(x− x′) dx′

)

=
∂f [x, y, y′]

∂y
− d

dx

∂f [x, y, y′]

∂y′
.

At stationary points, the functional derivative is zero, so we again obtain the Euler-Lagrange
equation:

∂f

∂y
− d

dx

∂f

∂y′
= 0.

2.3 Generalizations

2.3.1 Several independent functions

The Euler-Lagrange equation can easily be generalized for a functional of the form

I =

∫ xB

xA

f(x, y1, y2, . . . , yn, y
′
1, y
′
2, . . . , y

′
n) dx,

for which we want to determine the independent functions y1(x), y2(x), . . . , yn(x) that extremize
the functional. When we assume that yi(x) are in the extremizing form for all i 6= j, the problem
is the same as in the case with only one function, which means yj solves the Euler-Lagrange
equation. Repeating the argument for all the other functions, we find that

∂f

∂yi
− d

dx

∂f

∂y′i
= 0, i = 1, . . . , n. (5)

2.3.2 Higher derivatives

We consider a functional
I =

∫ xB

xA

f(x, y, y′, . . . , y(n)) dx,

where y(n) denotes the n:th derivative of y. Here, we use functional differentiation to derive the
Euler-Lagrange equation is this case, but the same result is obtained by using test functions.

As in Sec. 2.2, we Taylor expand f [x′, y+εgh(x−x′), . . . , y(n)+εg(n)h (x−x′)], where gh are function
such that δ(x) = limh→0+ gh(x), around ε = 0 to compute the limit

lim
ε→0

lim
h→0+

1

ε

∫ xB

xA

f [x′, y + εgh(x− x′), . . . , y(n) + εg
(n)
h (x− x′)]− f [x′, y, . . . , y(n)] dx.

The term of first order in ε corresponding to the derivative of order m ≤ n is

ε
∂f

∂y(m)
g
(m)
h (x− x′).
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When computing the functional derivative of I, this term is repeatedly integrated by parts to yield

lim
h→0+

∫ xB

xA

∂f

∂y(m)
g
(m)
h (x− x′) dx′ = lim

h→0+

(
∂f

∂y(m)
g
(m−1)
h (x− x′)

∣∣∣∣xB

xA

−
∫ xB

xA

d

dx′
∂f

∂y(m)
g
(m−1)
h (x− x′) dx′

)

= lim
h→0+

(
− d

dx′
∂f

∂y(m)
g
(m−2)
h (x− x′)

∣∣∣∣xB

xA

+

∫ xB

xA

d2

dx′2
∂f

∂y(m)
g
(m−2)
h (x− x′) dx′

)

= . . . = lim
h→0+

(
(−1)(m−1) d(m−1)

dx′(m−1)
∂f

∂y(m)
gh(x− x′)

∣∣∣∣xB

xA

+ (−1)m
∫ xB

xA

dm

dx′m
∂f

∂y(m)
gh(x− x′) dx′

)
= (−1)m dm

dxm
∂f

∂y(m)
.

A similar term is obtained for each y(m), 1 ≤ m ≤ n, and the Euler-Lagrange equation is

∂f

∂y
+

n∑
k=1

(−1)k dk

dxk
∂f

∂y(k)
= 0. (6)

2.3.3 Multiple integrals

The Euler-Lagrange equation can be generalized to extremize functionals

I =

∫
S

f(xi, yj ,
∂yj
∂xi

) dx1dx2 . . . dxn,

where S is an n-dimensional region and yj , j = 1, 2, . . . ,m, are functions with a given value on
the (n− 1)-dimensional boundary of the region.

The set of m Euler-Lagrange equations to solve in this case is

∂f

∂yj
−

n∑
k=1

∂

∂xk

∂f

∂
(
∂yj
∂xk

) = 0, j = 1, 2, . . . ,m. (7)

The derivation of the equation for n = 2 is given in [1]. Note that ∂f/∂(∂yj/∂xk) is considered
an explicit function of only x1, . . . , xn, meaning the functions yi and their derivatives should be
considered explicit functions of x1, . . . , xn when taking the partial derivative with reference to xk.
Keeping this in mind, it is easy to see Eq. (7) becomes the usual Euler-Lagrange equation in one
fimension.

2.4 Examples

2.4.1 Shortest line

Suppose we are given two points A = (xA, yA) and B = (xB , yB), xA < xB , in a plane, and we
want to determine the shortest path between the two. The length of a curve given by a function
y(x) is

I =

∫ B

A

√
1 + y′2 dx.
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Applying the Euler-Lagrange equation to f =
√
1 + y′2, we get

∂f

∂y
− d

dx

∂f

∂y′
= − d

dx

y′√
1 + y′2

= 0

⇒ y′√
1 + y′2

= constant.

This implies that y′ is a constant, so
y = ax+ b,

where a = (yA − yB)/(xA − xB) and b = (xAyB − xByA)/(xA − xB). From the nature of the
problem, it is clear this function minimizes the functional I : the path between the points can be
made arbitrarily long. The shortest line between two points is therefore the straight line.

Note that since f does not depend explicitly on x, we could also have used the Beltrami identity
to get the same result.

2.4.2 Brachistochrone

The Brachistochrone problem was proposed by Johann Bernoulli in 1696 [1]. The problem is to
find the path between two points A and B (A being the highest point) that a free-falling particle
M will travel in the shortest time (see Fig. 2).

We define the origin of the coordinate system to be A, and take the y-axis pointing downward.
The time taken to travel from A to B along a curve s is

I =

∫ B

A

ds

v
=

∫ B

A

√
1 + y′2

v
dx.

Figure 2: The Brachistochrone.

As the particle is free-falling,

1

2
mv2 = mgy ⇒ v =

√
2gy.

The functional to minimize is thus

I =
1√
2g

∫ xB

0

√
1 + y′2

y
dx.

The function f =
√

(1 + y′2)/y does not depend explicitly on
x, so instead of applying the Euler-Lagrange equation, we can
apply the Beltrami identity.

y′
∂f

∂y′
− f =

y′2√
y(1 + y′2)

−

√
1 + y′2

y
= C

⇒ 1

y(1 + y′2)
= C2.

Defining 1/C2 = 2a, the equation becomes

y′ =

√
2a− y
y

x− x0 =

∫
1

y′
dy =

∫ √
y

2a− y
dy.
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We change variables y = a(1− cos(φ)), and

x− x0 = 2a

∫
sin2

φ

2
dφ = a(φ− sin(φ)).

The solution to the problem is therefore the cycloid

x = a(φ− sin(φ)) + x0, y = a(1− sinφ),

where a and x0 are constants determined by the coordinates of A and B.

3 Introducing constraints

3.1 Global constraints

In some problems, we want to extremize the integral

I =

∫ xB

xA

f(x, y, y′) dx,

while satisfying n global constraints of the form

Ji =

∫ xB

xA

gi(x, y, y
′) dx = Ci, i = 1, 2, . . . , n,

where Ci are constants. This problem is solved with the use of test functions in [1]. A derivation
using functional differentiation is presented here.

To minimize I while satisfying the constraints Ji, we introduce Lagrange multipliers λi, and define

K = I −
n∑
i=1

λiJi =

∫ xB

xA

h(x, y, y′) dx,

where h = f −
∑
i λigi.

Once again, the functional is extremized when its derivative is zero. The derivation of δK/δy is
the same as was presented in Sec. 2.2, so the equation to be solved is

δK

δy
=
∂h

∂y
− d

dx

∂h

∂y′
= 0, (8)

with the constraints Ji = Ci.

If the functional depends on m independent functions yi, the Euler-Lagrange equation is

∂h

∂yi
− d

dx

∂h

∂y′i
= 0, i = 1, 2, . . . ,m, (9)

where h is defined the same way as above. The full system of m Euler-Lagrange equations and
n constraints, with the boundary conditions, determines the coordinates yi and the Lagrange
multipliers λi.
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3.2 Local constraints

In this section, we extremize a functional of the form

I =

∫ xB

xA

f [x, y1, . . . , yn, y
′
1, . . . , y

′
n] dx,

this time while satisfying m local constraints of the form

gi(x, y1, . . . , yn) = 0, i = 1, . . . ,m.

As in the derivation in Sec. 2.1, we introduce a collection of test functions yi(x, ε1, . . . , εm+1) such
that

(a) yi(xA, ε1, . . . , εm+1) = yi,A and yi(xB , ε1, . . . , εm+1) = yi,B for all ε1, . . . , εm+1,

(b) yi(x, 0, . . . , 0) = yi(x), where yi are the solutions,

(c) yi are twice differentiable.

Note that we introduce m + 1 parameters, where m is the number of constraints, so that the
parameters are not determined by the constraints.

To get the constraints in integral form, we introduce a set of arbitrary functions φi(x), i = 1, . . . ,m.
Then

gi(x, y1, . . . , yn) = 0 ⇔ Ji =

∫ xB

xA

φi(x)gi(x, y1, . . . , yn) dx = 0

Now we proceed the same way as in the previous part, and introduce Lagrange multipliers λi to
define the functional

K = I +

m∑
i=1

λiJi =

∫ xB

xA

f +

m∑
i=1

λi(x)gi dx,

and the function

K(ε1, . . . , εm+1) =

∫ xB

xA

h(x, y1, . . . , yn, y
′
1, . . . , y

′
n) dx, (10)

where λi(x) = λiφ(x) and h = f +
∑m
i=1 λi(x)gi. .

We compute the derivative of K with reference to each εi, and integrate by parts :

∂K

∂εj
=

n∑
i=1

∫ xB

xA

∂h

∂yi

∂yi
∂εj

+
∂h

∂y′i

∂y′i
∂εj

dx =

n∑
i=1

∫ xB

xA

[
∂h

∂yi
− d

dx

∂h

∂y′i

]
∂yi
∂εj

dx, j = 1, . . . ,m+ 1.

The derivatives are zero at εj = 0 ∀j, so

n∑
i=1

∫ xB

xA

[
∂h

∂yi
− d

dx

∂h

∂y′i

]
ηij(x) dx = 0, j = 1, . . . ,m+ 1, (11)

where ηij = ∂yi/∂εj .

Here, contrary to the derivation in Sec. 2.1, the functions ηij are not completely arbitrary. Indeed,
the derivative of the i:th constraint with respect to εj at εk = 0 ∀k is

dgi
dεj

∣∣∣∣
εk=0 ∀k

= 0 =

n∑
l=1

∂gi
∂yl

∂yl
∂εj

∣∣∣∣
εk=0 ∀k

=

n∑
l=1

∂gi
∂yl

ηlj = 0,
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so the functions ηlj are mutually dependent for each 1 ≤ l ≤ m+1. However, we should remember
the functions λi(x), i = 1, . . . ,m are arbitrary. Equation (11) can be rewritten

n∑
i=1

∫ xB

xA

[
∂f

∂yi
− d

dx

∂f

∂y′i
+

n∑
l=1

λl(x)
∂g

∂yi

]
ηij(x) dx = 0, j = 1, . . . ,m+ 1.

We can now choose the functions λi so that the coefficient of ηij(x) vanishes for all 1 ≤ i ≤ m, so

∂f

∂yi
− d

dx

∂f

∂y′i
+

n∑
l=1

λl
∂gl
∂yi

= 0, i = 1, . . . ,m.

The last n−m coefficients are then independent, and

∂f

∂yi
− d

dx

∂f

∂y′i
+

n∑
l=1

λl
∂g

∂yi
= 0, i = m+ 1, . . . , n,

from Eq. (11). Combining the results, we obtain a set of n differential equations

∂h

∂yi
− d

dx

∂h

∂y′i
= 0, j = i, . . . , n. (12)

Together with the m constraints

gj(x, y1, . . . , yn, y
′
1, . . . , y

′
n) = 0, j = 1, . . . ,m, (13)

and the boundary conditions on the functions yi, these equations uniquely define the functions
y1, y2, . . . , ym and λ1, λ2, . . . , λn.

3.3 Example : maximum area

Using the results derived in previous sections, we determine the shape that gives the largest surface
area when the perimeter is fixed. That is, we want to find x(t) and y(t) so that

A =
1

2

∫ tB

tA

(xy′ − x′y) dt,

is maximized when

L =

∫ tB

tA

√
x′2 + y′2 dt

is fixed. We define
h =

1

2
(xy′ − x′y) + λ

√
x′2 + y′2,

where λ is a Lagrange mutliplier. Applying the Euler-Lagrange equations, we get two differential
equations

∂h

∂x
− d

dt

∂h

∂x′
= y′ − λ d

dt

x′√
x′2 + y′2

= 0,

∂h

∂y
− d

dt

∂h

∂y′
= x′ + λ

d

dt

y′√
x′2 + y′2

= 0.

By integration, we obtain

y − y0 = λ
x′√

x′2 + y′2
,

x− x0 = −λ y′√
x′2 + y′2

⇒ (x− x0)2 + (y − y0)2 = λ2,
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which is the equation of a circle of radius λ. Since the perimeter is L, λ = L/(2π). As the area
of a figure with perimeter L can be made arbitrarily small, but not arbitrarily large, it is clear
that this solution gives a maximum. With a fixed perimeter, the area is therefore maximized in a
circle.

4 Application to classical mechanics

In physics, a direct application of variational calculus is in Lagrangian mechanics, which is an
alternative to the Newtonian formulation of classical mechanics. It is often advantageous over the
latter, as solving constraint forces is not necessary in Lagrangian formalism, and the coordinates
can be chosen more conveniently than when calculating with vectors. Moreover, Noether’s theo-
rem (see Sec. 5) is easily applicable, and allows to relate symmetries in the system to conserved
quantities.

Let us consider a system specified by generalized coordinates q1(t), . . . , qn(t), with kinetic energy
T and potential energy V . The Lagrangian is defined as

L(t, qi, q̇i) = T − V, (14)

where the dot denotes a time derivative. The motion of the system follows Hamilton’s principle :
the motion from time tA to tB is such that the action

S =

∫ t2

t1

L dt (15)

is an extremum.

Based on the results from previous sections, the Lagrangian therefore solves the Euler-Lagrange
equations

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0, i = 1, 2, . . . , n. (16)

When the coordinates are constrained by

gj(t, q1, . . . , qn) = 0, j = 1, 2, . . .m,

the set of equations to solve is

∂L

∂qi
− d

dx

∂L

∂q̇i
=

m∑
j=1

λj
∂gj
∂qi

, i = 1, . . . , n. (17)

In mechanics, the Lagrange multipliers are related to the forces needed to constrain the motion
[1, 2] : the generalized reaction forces for the system are

Qi =

k∑
j=1

λj
∂gj
∂qi

. (18)

Figure 3: Simple pendulum.

As an example, we consider a simple pendulum of length R
and mass m (see Fig. 3). We use generalized coordinates r
and θ, and neglect friction and the mass of the string. The
Lagrangian is

L =
1

2
mṙ2 +

1

2
mr2θ̇2 +mgr cos θ.
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The motion is constrained so that

r −R = 0.

The Euler-Lagrange equations yield

θ̈ = −g
r
sin θ,

mr̈ = mrθ̇2 +mg cos θ − λ.

Using the constraint r −R = 0, we obtain

θ̈ = − g
R

sin θ,

λ = mrθ̇2 +mg cos θ.

The first equation describes the motion of the pendulum, and the second is the constraint force
needed to keep r equal to R. Note that the first equation could have been obtained by simply
using only one generalized coordinate θ, without solving the force of constraint. The reason to
include the generalized coordinate r and the corresponding constraint is to get information on the
reaction force.

5 Noether’s theorem

Let us consider a functional

I =

∫ xB

xA

f(x, yq, . . . yn, y
′
1, . . . y

′
n) dx,

and a transformation

x̃ = x+ εξ(x, y1, . . . , yn, y
′
1, . . . , y

′
n),

ỹi = yi + εηi(x, y1, . . . , yn, y
′
1, . . . , y

′
n).

According to Noether’s theorem, if the functional I is invariant under this transformation, meaning

I(ε) =

∫ xB

xA

f(x̃, ỹ1, . . . , ỹn, ỹ
′
1, . . . , ỹ

′
n) = I ∀ε,

there exists a corresponding conserved quantity

n∑
i=1

∂f

∂y′i
ηi + ξ

(
f −

n∑
i=1

y′i
∂f

∂y′i

)
= C. (19)

Put another way, for every differentiable symmetry in the system there exists a corresponding
conservation law. A proof of the theorem is given in [1].

As an example, let us consider a two-particle system with an interaction potential that depends
only on the separation of the particles. The corresponding Lagrangian is

L =
m1

2
|ṙ1|2 +

m2

2
|ṙ2|2 − V (r1 − r2).

The Lagrangian, and thus the action, is clearly invariant under the transformation

t̃ = t+ ετ, r̃1 = r1 + εξ1, r̃2 = r2 + εξ2,

11



where
τ = 0, ξ1 = (1, 0, 0), ξ2 = (1, 0, 0).

According to Noether’s theorem,

2∑
i=1

∂L

∂ẋi
ξi =

∂L

∂ẋ1
+
∂L

∂ẋ2
= px1

+ px2
= C,

where px1 and px2 are the x-component of the linear momentum of particle 1 and 2, respectively.
The x component of the total linear momentum of the system is therefore a constant of motion.
In a similar way, it can be shown that the other components are also conserved, so the total
linear momentum of the system is conserved. In general, translational invariance gives rise to
conservation of linear momentum, rotational invariance to conservation of angular momentum,
and time invariance to conservation of energy.
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