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GENETIC STUDY HUS

The study of a sample of DNA to identify genetic variants at chromosomal
or nucleoftide level

Used to specify and confirm diagnoses, understand pathogenesis, choose
therapies, monitor treatment success, monitor disease progress, identify
patients at risk of developing a disease, etc

Long lasting / Permanent consequences on patients and their relatives

Key role in precision medicine




APPLICATION AREAS HUS

Separately (1/2000) Collectively (1/17)
Rare diseases: diseases that are individually

rare (1/2000) but collectively very frequent (8% . ’
of the population). 80% have genetic cause

® O
ww»@@ Cancers: 40% of people will have a cancer during
their lifetime. Genetic data important in identifying

individuals at risk, choosing therapy, monitoring
treatment outcomes, and confirming diagnosis
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Drug A DrugB Tumour growth

Screening of individuals at risk of developing
endemic diseases: Reduction of diabetes
incidence by 20% would save in 743M€ in
healthcare expenses in Finland every year

Healthy Diseased




GOOD GENETIC TEST HUS

Agile - Usable to different sample types and diseases

Rapid - Results must be delivered rapidly to the clinic (days/weeks)
Sensitivity - True pathogenic variants identified correctly
Specificity - False predictions a major cause of delay

Cost efficient - Unclever to waist limited financial resources
Validated - All clinical tests must be to validated by the laboratory
Reproducible - Re-analysis produces concordant results

Reliability - Instruments / Algorithms don't get broken / crash

Standardized - Same protocols / algorithms / parameters applied
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HUS

HIGH-THROUGHPUT SEQUENCING

High-throughput sequencing is the process of identifying the
sequences of vast numbers of short DNA fragments in parallel. Used

in increasing levels also in clinic

High output. Barcoding allows to analysis
of hundreds of samples per analysis run

Highly accurate. Multiple independent
interrogations made for each region of
interest

Relative rapid turnaround time (2-14d). Costs ~300 € per sample

Cost/Genome
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SEQUENCING INSTRUMENTS USED IN CLINIC HUS
lllumina lon Torrent S5 Oxford Pacbio
Novaseq™ 6000 prime Nanopore RS I

T — Low yield (10-50 Gb) Low yield (42 Gb)
High yield (250-3000 Gb) 200-400 bp Singlzonll(:::cme
2x150 bp ~1007TS (20-400 genes) Runtime data-analysis
20-500 WES/WGS Rapid (24h) Direct RNA-sequencing
Rapid (24h)

DNA/RNA modifications
Rapid (16-72h)
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CLINICALLY RELEVANT SEQUENCING STRATEGIES ~ NU>

« Gene-panel sequencing (TS)
+ Defined set of regions associated with a disease (<1Mb, 20-500 genes)
* Up to ultra-high depth (~5000X), price ~500€

+  Whole-exome sequencing (WES) | s
* Protfein coding regions (~60Mb / 22,000 genes)

« Cover ~85% of known pathogenic variants
* Infermediate depth (~30-500X), price ~1500 € e

chromosome

« Whole-genome sequencing (WGS) _
* Whole genome (~3,000Mb / 60,000 genes)
* Low depth (~30X), price ~2500 €



HUS
CLINICALLY RELEVANT SEQUENCING STRATEGIES
« Transcriptome sequencing (TAS / RNA-seq) s | —
« MRNA + liIncRNA, mRNA, or total-RNA =
«  Fusion genes, differential expression sechnologies: = Ter i T o temm
- High depth (200-1000X), price 300 € e ——
« Methylation sequencing g 60 g e

Sequence, /PCR

« Hyper- and hypomethylation cytosines
* Infermediate depth (~30-500X), price ~500 € @© @®

+ Mefthylated regions / Whole genome g




WHOLE-GENOME SEQUENCING

WGS provides most homogenous and stable
coverage across the genome. Most suitable for
understsanding extreme GC-regions

Superior in identifying structural variants and large-
scale genome instabilities like chromothripsis,
kataegis, and chromoplexy

At similar read depths WES and WGS identify SNVs
and indels equally accurately. Price still limits the
use of WGS in detection of (somatic) short variants

(e.g. 100X = 2000€)

Mean coverage

HUS
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HUS
WHOLE-EXOME SEQUENCING
Methodologically as WGS, but protocol "o e R
. . . . @ © N\ =
mvglves enrichment of coding and r.eg.;ulq’rlve N 9;\\'; 'z -§1\1/
regions (1-2% of the genome) by hybridization " I -

Captured target region Target regions bound Target regions
library (exons) to streptavidin beads hybridized to probes

Captures coding and regulative regions of almost
all genes and thereby preclude time consuming
and laborious preselection of target genes

792 autism spectrum
disorder genes

i% Overlap

Suitable also to FFPE and other poor-quality
samples common in clinic




WHOLE-EXOME SEQUENCING

« The cost-efficiency of WES entails use of
greater sequencing depth that improves
accuracy and detection of variants
present only in a fraction of cells in
comparison to WGS

« Coverage variation and absence of
reads spanning structural variant (SV)
breakpoints make identification of SVs
other than copy-number variants (CNV)
challenging

1oc-mmm=ﬂz—“— ﬁmﬁmm

HUS

Strelka2

Percent
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® 50%
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® 300%
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GENE-PANEL SEQUENCING

Focuses on preselected clinically relevant target
regions. Enrichment by hybridization and/or PCR-
amplification

Most panels include exons of 50-500 genes and are | ... — ==  —= ——

disease and/or disease-set specific

Superior in identifying somatic and mosaic variants
present in a fraction of cells. Limited ability to
detect SVs and chromosomal aneuploidies

Most suitable to FFPE and otfther poor-quality
samples common in clinic




HUS
TRANSCRIPTOME SEQUENCING
RNA is the source material. Includes often selection of poly-
A MRNA, depletion of rRNA and/or depletion of globin RNA
@(?@S:”;:m
Samples should be preserved immediately using products i\:\:\w
like RNAlater, PAXgene, etc MET“:‘ -
. . i
Used to detect gene fusions, splice variants, deep infronic —* =—=  ~
mutations, and allele specific expression of genes Jip—
lw“qwmm
Transcriptome is dynamic and varies due to tissue, cellular !

conditions, and environment efc. Use of patient-matched
controls or control-sets (>40 subjects) recommendable
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HUS

Assembly Short Reads Mapping Long Reads Mapping

STRUCTURAL VARIANTS

 Structural variation is generally
defined as a DNA variant ~1
kb or more in size

Deletion

Duplication

* |Includes inversions, deletions,
duplications, translocations
and insertions within  and
between chromosomes

Inversion
Sample

Insertion
Sample

« Duplications and deletions
can also occur at genome,
chromosome or chromosome

Translocation
Sample

O rl I I | evel Paired end read Unmapped read Split reads on the reference indicating SV type by its Long read Split long read
directions

—_— —_— =

Mahmoud, Genome Biol. 2019




CHROMOSOMAL ABNORMALITIES

« In complex rearrangements multiple mutations
occur in a single catastrophic event and result in @
scrambled genome

* Include kataegis, chromoplexy, chromothripsis and
chromoanasynthesis

« Typically affects cancer cells. Prevalence across
cancers varies from ~0% (e.g. leukaemia) to >50%
(e.g. soff fissue cancers)

HUS
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Balachandran P, et al.
Chromosome Res. 2020



STRUCTURAL VARIANT BIOINFORMATICS

Four major analysis strategies
available for SV detection

Read-depth most useful for g paredreadser)

WES and TS. Paired reads,
split reads, and de novo

assembly mainly applicable
to WGS data

Solutions used in clinical
diagnosis typically combine
methods relying on different
stfrategies

A ReadDepth(RD)

Deletion Duplication
reference =]
samplereads > <« — S < > < S g S
.% é_
ﬁ &
ﬁ e
Tandem Novel sequence
No SV Deletion duplication insertion Inversion Translocation
reference __ —> <— —> e = 2 —rE— ? W—__BE h—
C SplitReads (SR) D. De Novo Assembly (AS)
Deletion
reference - — reference
— —> — jaee—sisi]
sample reads : sample reads S .
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Escaramis, Brief Funct Genomics, 2015,




HUS™

STRUCTURAL VARIANT CALLER PERFORMANCE
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READ DEPTH APPROACH HUS

The read-depth method allows to detect deletions and duplications.
Based on the hypothesis of a correlation between the depth of coverage
of a genomic region and the copy number of the region

Works better on large-sized CNVs (>3 exons)

Sensitivity and precision varies by coverage, platform, assay and tissue-
type. Results confirmed aft clinic using additional laboratory methods

Most algorithms require large-size control background sample sets. C
samples must have been generated using the same platform and



SUMMARY OF READ DEPTH APPROACH

Map reads to the genome

Count number of alignments in
each target interval

Remove biases (infroduced by GC
content, sample quadlity, total
depth, mappability, exon capture
efficiency efc) and latent systemic
artifacts

Detect CNV  boundaries by
segmentation and output copy
number estimates

Typical
Mapped workflow

sequencing
Target
bins (BED)

reads (BAM)

Calculate
coverage in
each region
center log2

Bln
coverages

Normalize
Reference , SIItH

bin values

Correct

biases

Copy Segment Copy
Ratlo segments

Visualization
Analysis
Export

Talevic, PLoS Comput Biol 201

lon; Off-target
5 ( .....
waliiee bins (BED)

HUS

Initial
Target configuration
bins (BED)

Divide the
off-target Accessible SR
geno.mic regions -«——|Ssequence
space into (BED) Locate \(FASTA)
bins sequencing-

inaccesible
Off-target regions
.......... bins (BED)

.
.
...

Off- target Mapped
bins (BED) sequencing
reads (BAM)

Combine normal

samples Bin
...... ﬁ coveraQES

bins (BED)

Genome
sequence
(FASTA)

O Input files
[ Intermediate files
[ Output files

. A



HUS
READ BINNING
Process of determining the number of reads at certain genomic loci
Regions captured by the assay (with
some padding) used typically in WES
N=14 N=10 N=13
In WGS analyses, the reference is ——— o e ——
o] o T f—

divided in larger (often equally sized
and non-overlapping) bins

Typically only unambiguously mapped reads used




HUS

NORMALIZATION

 Process of removing artifacts and biases e
infroduced by GC contfent, sample quality, fotal
depth, mappability, capture efficiency etc

1000

Sampl

- Achieved often with the help of a set of healthy £ I T
reference samples using binomial or Poisson log- | FiE &= iy
linear model. Identification of latent factors rely & =

on singular value decomposition, PCA etc @

Sample

 Methods not relying on reference samples make @ —— —

loess, polynomial etc fits between counts and con
. Jiang, Nucleic Acids Res
genomic features ‘




SEGMENTATION

« Detection of variation along a chromosome to
define CNV start and end sites

« Achieved in most methods using circular binary
segmentation (CBS). Alternatives include Poisson
likelihood-based segmentation.

« Algorithms not relying on reference samples
make loess or polynomial fits between counts
and genomic features
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WES ANALYSIS OF RARE DISEASES HUS

Diagnosis of rare diseases often done with WES given the large number of
potential candidate disease-genes and high confribution of exonic and
splice-site (point) mutations

WES analyses focus on SNVs and Indels Diagnosis achieved in ~30-70% of
monogenic cases (+40% in comparison to conventional methods)

SV/CNV analysis increases diagnostic yield 10-20%. External methods (e.g.
MLPA or DDPCR) used to confirm SV/CNV findings

May reveal incidental genetic findings unrelated to the initial indicati
Current standard is to report those in 81 medically actionable genes



CLINICAL VS. RESEARCH GENOMICS

Cohort size: research cohorts can include thousands
of study subjects. Clinical sequencing applied fo
single individuals (hopefully with controls)

Sample material: blood and fresh-frozen samples
often used in research project. Clinical sequencing
typically applied to blood / FFPE (Formalin Fixing with
Paraffin Embedding) samples

Methods: Only well-established computational and
lab methods should be used in clinical diagnosis. Any
inspiring method can be used in research context
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LABOUR INTENSIVE PROCESS

Total turnaround
time ~10-28 days

Hands-on time

~5-7 days

~50% faster than
traditional tests

HUS

Sequencing
Laboratory specialist insttument Bioinformatician Genetician
[ Sample ] Analyte | Liorary | - Rawdatafor | . Aligned reads 1 Variant calls
. )i _ givensample :
: { 3 3 :
e : Cluster N PCR duplicate
Sample FEIITISEIe generation Raw reads correction Variant
registration ) 1 quality analysis 1 annotation
1l L Sequencing by 1 Base quality 1
ARSI (1o synthesis score calibration Variant filtering
gDNA isolation | l | { Pre-processing 1 and priorization
Hybr|d|zof|on Base calling I'ndel
N enrichment 3 realignment 3
gDNA quality + 4 Reference v Variant
analysis PCR Demulfinlexin alignment Variant callin classification
amplification vitiplexing ! ng
v l l v : i v
[ Analyte | [ Libra Raw data for | [ Aligned reads 1i [ Variant calls [ Clinical report |
L Y J7 ry . givensample | L 9 ) P
1d 2d 1d
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EXPERIMENTAL DESIGN HUS

« Trio sequencing of the proband and his/her relatives increases diagnostic
vield ~10% and streamlines analysis. Enables to filter familial variants and
finding de-novo and compound heterozygous events

Trio-analysis Proband-only

5] o )
(0 00 00
Avutosomal Avutosomal De-novo Compound

dominant (AD) recessive (AR) heterozygote (CH)




WES LIBRARY PREPARATION AND SEQUENCING ~ 1US

Genomic DNA Random DNA fragments Adapter ligated fragments
)Y 1 H(\l\l/ : \/\1\l
) \/ \ l/] 1. Enzymatic Fragmentation

2. Addition of adapters/barcodes
Slothlated target. &_® 3. Pre-amplification
specific probes o L . . .
- 3 4. Pooling of libraries
5. Hybridization
Eluted beads and probes Streptavidin beads
6. Target capture
Q\ Q_ . . . B g p
@ e e e o © \o\]\° 7. Post-amplification
LS N No__ 8. llumina paired-end s
AT R NG WA NN

7 ’ \".‘.'_. ]]\\ ) T

Captured target region Target regions bound Target regions
library (exons) to streptavidin beads hybridized to probes



SMALL VARIANT CALLING PROCESS HUS

. ‘ Raw SNPs + Indels [ \

{ N

Filter Variants

\ J

1
{ N

Refine Genotypes

i
Annotate Variants

v

Raw Unmapped Reads vee Analysis-Ready Reads
uBAM or FASTQ
1

[ Map to Reference ] :

Call Variants Per-Sample

HaplotypeCaller in GVCF mode

Mark Duplicates 1 ‘ Analysis-Ready [ \
|
Recalibrate Base L[ Consolidate GVCFs ]—J
Quality Scores I !

Raw Mapped Reads
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Evaluate Callset
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Joint-Call Cohort

Analysis-Ready Reads GenotypeGVCFs
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| Raw SNPs + Indels [ \
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SMALL VARIANT CALLING HUS

1. Identify regions with alignments

W|Th miSmOTCh eVidence i Identify ActiveRegions 1 i Assemble plausible haplotypes 9
' . REF _TATG:AAT: GGTATAGGCT T‘GGK:Q\\/’AXTA % "G_GTA_T‘/EQ/\G‘C;Q o)
2. Discover plausible haplotypes R > O i O
by performing de Bruin-like | E T — T s
. C] T A T -
graph construction i ———] | e — )
\ J

¥

3. DeTeI’miﬂe The reOd—SUppOI’T Of il Determine per-read likelihoods (PairHMM) k i Genotype sample k
haplotypes with paired Hidden EE——— — o ey
Markov e »| [a@

5 i A
T A T G| GLs + annotations

4. Define the genotype




SMALL VARIANT CALLING

®

HUS

Most small variant callers discover germline variants with exceptional recall
(0.996) and precision (0.998). Variant calling performance however varies
across genomic regions and is lower on difficult-to-map regions (including
segmental duplications etc) and MHC loci

Performance metrics F1 Rank
Technology Genomic region Participant F1 Recall Precision All Diff MHC
MULTI all® Sentieon 0.999 0.999 0.999 1 4 1
MULTI all® Roche Sequencing Solutions 0.999 0.999 0.999 1 1 7
MULTI all® The Genomics Team in Google Health 0.999 0.999 0.999 1 2 4
MULTI diff Roche Sequencing Solutions 0.994 0.992 0.996 1 1 7
MULTI MHC Sentieon 0.998 0.998 0.998 1 4 1
ILLUMINA all DRAGEN 0.997 0.996 0.998 1 1 5
ILLUMINA diff DRAGEN 0.969 0.961 0.978 1 1 5
ILLUMINA MHC Seven Bridges Genomics 0.992 0.989 0.996 6 9 1
PACBIO all The Genomics Team in Google Health 0.998 0.998 0.998 1 2 4
PACBIO diff Sentieon 0.993 0.991 0.994 4 1 1
PACBIO MHC Sentieon 0.995 0.993 0.997 4 1 1
ONT all The UCSC CGL and Google Health 0.965 0.947 0.984 1 1 2
ONT diff The UCSC CGL and Google Health 0.983 0.976 0.988 1 1 2
ONT MHC Wang Genomics Lab 0.972 0.964 0.980 3 3 1

Olson, Cell Gen




VARIANT FILTERING HUS

« Variant calling results in ~10M of variants. Tertiary analysis aims to short-list
these variants into those with relevance for the disease and/or phenotype

« Filtering of variant calls based on variant caller information (e.g. variants
not supported by enough many reads, variant calls supported by low-
quality reads, etc)

* Filtering of variants overly common in population (MAF >5%)

« Filtering of variants in infronic and/or other non-functional regions

- Filtering of variants not associated with the disease phenotypes



SMALL VARIANT FILTERING HUS
All variants 10,000,000

Remove low quality variants 380,000

Remove intronic and intergenic variants 38,000

Remove common variants with MAF > 1% 960

Remove synonymous and non-frameshift 700

Return clinically significant variants filtered previously 800

Remove variants not matching disease phenotype  20-40




VARIANT CLASSIFICATION HUS

ACMG/ASCO standards recommend a five-tiered system for indicating
variant pathogenicity based on 28 criteria. Classification 18/28 criteria is
semi-automated

Variant assessment requires segregation data on variants / diseases and
iterature information on variant pathogenicity

Machine-learning based variant classification and text-mining of gene-
disease-variant relationships from medical and scientfific literature may
ease the process in future

Classification concordance typically high within laboratory (~78%) b
across different laboratories (~34%)



ACMG VARIANT CLASSIFICATION

Databases like
gnomAD, TopMen

Algorithms like
CADD, Revel

In part from
software like VEP

Databases like
ClinVar, HGMD

Variant of

Benign (B) Likely benign (LB) uncertain Likely |:>(0L:I;ogenic
significance (VUS)
Benign R . Pathogenic R
Strong Supporting Supporting Moderate Strong  Very Strong

Population MAF is too high for
Data disorder BA1/BS1 OR
observation in controls
inconsistent with
disease penetrance BS2

Absent in population
databases PM2

Prevalence in
affecteds statistically
increased over
controls PS4

\

HUS

/

Manual
assignment

Computational Multiple lines of Multiple lines of Novel missense change | Same amino acid Predicted null
And Predictive computational evidence computational at an amino acid residue| change as an variantin a gene
Data suggest no impact on gene evidence support a where a different established where LOF is a
/gene product BP4 deleterious effect pathogenic missense pathogenic variant known
SSSin R on the gene /gene change has been seen PS1 mechanism of
> product PP3 before PM5 disease
ohlytrtlncatlng cause PVSI
disease BP1 Protein length changing
; : % variant PM4
Silent variant with non
predicted splice impact BP7 /
Functional Well-established Missense in gene with | Mutational hot spot Well-established
Data functional studies show low rate of benign or well-studied functional studies
no deleterious effect missense variants and | functional domain show a deleterious
BS3 path. missenses without benign effect PS3
common PP2 variation PM1
Non-segregation Co-segregation with
Segregation W with disease BS4 disease in multiple ;
Data itfactad iy P Increased segregation data
members PP1
De novo De novo (without De novo (paternity &
Data paternity & maternity [l maternity confirmed)
confirmed) PM6 PS2
Allelic Data Observed in trans with For recessive
a dominant variant BP2 disorders, detected
in trans with a
bserved in cis with a pathogenic variant
athogenic variant BP2 PM3
Other Reputable source w/out Reputable source
Database shared data = benign BP6 = pathogenic PP5
Found in case with Patient’s phenotype o
Other Data an alternate cause FH highly specific for

BP5

gene PP4




DEEP LEARNING

« Various deep learning algorithms have in past few years
emerged for automated ACMG classification of small
variant calls

 Not much information available on algorithms and/or

data that were used in model fraining N2
— Nostos Genomics
s N
N

 Deep learning methods appear to perform (at least in
our laboratory) number-wise well: 77% of 93 test cases
solved, the mean rank of the causafive variant 4.3, n o0 0 e e
55% cases the causative variant ranked in the top 5. .‘."
However, no productivity improvement observed Ql AGEN




CNV CALLING

10-20% of rare diseases results from small-size (1-3
exons) deletions and duplications

Read-depth strategy used most commonly due
to the absence of reads that span CNV/SV
breakpoints

CNV calling accuracy less than that seen for
small variants and results validated with external
methods. Longer CNVs detected more reliably

CNV analysis requires large numbers of sample-
type matched control samples analysed using
the same platform and assay

HUS
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CNV CLASSIFICATION

ACMG/ASCO standards recommend a five-tiered
system for indicating CNV pathogenicity

Pathogenicity assessment  builds upon semi-
quantitative point-based scoring metric for CNV
classification. Separate metrics exist for deletions
and duplications

Requires segregation data on variants and/or
diseases, informatfion on overlap with known
benign and haploinsufficiency (i.e. two copies
needed for normal function) regions and
iterature and case information

HUS
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FUTURE HUS

« Even shorter tfurn-around-time through the use of
GPU-accelerated algorithms allowing to complete
WGS analyses in ~60 min. Machine learning will
streamline the variant classification proces

nnnnnnnnnn

« Improvements in handling ulira-low DNA inpufs e
and decreasing sequencing costs will make WGS
the preferred strategy —_—————

Single Nucleotide ) ) Tandem
: Deletion Insertion o
Variant Duplication

« Long-read single-molecule sequencing techniques e = =
allow to detect all types of variants accurately Do erson  Tansicaton RN
and will become the preferred strategy

—_—— —_—
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FUTURE

Multiregional sequencing of tumours from tens of
sites will improve cancer diagnosis and treatment
and understanding of tumour heterogeneity

Subclonal reconstruction and inference of cancer
evolution to better understand onset of disease
and mechanisms that acted then

Ultra-low coverage (0.1-1X) WGS of cfDNA in CNVs
and other variant analysis provides non-invasive
means to diagnose and monitor cancer

Woodcock, Nat. comm, 2020
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