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Gene transcription

▶ A process of making an RNA copy of a gene sequence in DNA

Figure from https://geneed.nlm.nih.gov/topic_subtopic.php?tid=15&sid=22

https://geneed.nlm.nih.gov/topic_subtopic.php?tid=15&sid=22
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Splicing and alternative splicing

▶ E.g. in humans, genes consist of exons and introns
▶ RNA splicing: introns are generally spliced out from precursor RNA (pre-mRNA) molecules
▶ Alternative splicing: a process of making alternative mRNA molecules (called transcripts

or isoforms) from the same precursor RNA (pre-mRNA): splice out specific exons
▶ In humans, ∼95% of multi-exonic genes are alternatively spliced

Figure from https://en.wikipedia.org/wiki/Alternative_splicing

https://en.wikipedia.org/wiki/Alternative_splicing
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Alternative splicing mechanisms

▶ Alternative splicing is largely regulated by splicing factors (proteins) that bind RNA motifs
(short stretches of RNA) located in the pre-mRNA

▶ Alternative splicing happens co-transcriptionally

Figure from (Chen & Manley, 2009)
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Different types of alternative splicing

▶ Basic modes of alternative splicing

▶ Multi-exonic genes can have complex splicing patterns

Figure from (Cartegni et al., 2002)
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RNA-seq

▶ Types of RNA molecules in a cell

ribosomal RNA rRNA ∼85-90%
(ribosome, protein synthesis)

transfer RNA tRNA ∼10%
(adaptor, protein synthesis)

mRNA messenger RNA ∼1-5%
(protein coding)

micro RNA and other miRNA, piRNA, etc. rest
non-coding

▶ High-throughput sequencing of RNA provides a comprehensive picture of the transcriptome

▶ RNA molecules are often enriched for mRNAs (poly-A tail) or non-coding RNAs (size
selection)
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RNA-seq: basic experimental protocol

1. RNA molecules are extracted from a
(large) collection of cells: RNA molecules
are pooled without knowing from which
cell each RNA molecule comes from
(bulk RNA sequencing)

2. RNA population is converted to a library
of cDNA molecules, fragmented, and
adaptors are attached to one or both
ends

3. High-throughput sequencing for the
cDNA fragment library (single-end or
paired-end), read length ∼30-400 bp

4. Computational and statistical analysis:
alignment against reference genome or
transcriptome, transcriptome
reconstruction, expression quantification,
etc. Figure from (Wang et al., 2009)
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What can we do with RNA-seq data?

▶ Characterization of genes: location in genome, beginning/end, exons

▶ Transcript assembly
▶ Identify transcript variants by constructing full-length spliced transcripts from the RNA-seq

data (either with or without the knowledge of the reference genome)

▶ Transcript quantification
▶ Given transcript sequence annotations (reference), estimate

▶ Gene expression or
▶ Abundances of all different transcripts

▶ Differential expression
▶ Statistical inference for differential gene expression or alternative splicing

▶ And more!
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RNA-seq read alignment with transcript or exon reference

▶ If full-length transcript annotations are known (see“Processed mRNA”below), then reads
can be aligned exactly as aligning DNA sequence reads against a reference genome
▶ Use transcripts in place of reference genome

▶ If transcript annotations are not known (but exons are known), still similar approaches as
for aligning DNA sequence reads will work with some modifications
▶ Transcriptomic reads can span exon junctions: alignments with gaps (or align against all

possible exon configurations)
▶ Transcriptomic reads can contain poly(A) ends (from post-transcriptional RNA processing)
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does not rely on annotations. Instead, it 
uses Bowtie (in an initial alignment pass) to 
identify exons that fully contain some of the 
reads, and then aligns the remaining reads 
to junctions between those exons9. Another 
program, G-Mo.R-Se (http://www.genoscope.
cns.fr/externe/gmorse), performs a similar 
spliced alignment while constructing gene 
models from RNA-Seq data10.

Limitations and open problems
The current solutions for short-read mapping all 
have limitations. Mapping programs such as Maq 
and Bowtie offer very limited support for align-
ing reads with insertions or deletions (indels). 
Some read mappers, such as SHRiMP (http://
compbio.cs.toronto.edu/shrimp), support ABI’s 
‘color space’ sequence representation, but most 
do not. The spliced alignment programs suffer 
from these same problems and add a few of their 
own. Annotation-based methods are of course 
only as good as the annotations, and many 
organisms have annotations supported only 
by homology or computational predictions. 
Machine learning methods will perform poorly 
if they are trained on incorrect annotations, and 
they are prone to overtraining.

Many challenges and questions remain for 
developers of read mapping software. As all the 
sequencing machine vendors are trying to pro-
duce longer reads, will the short-read mapping 
programs scale well as the reads get longer? Maq, 
Bowtie and several other short-read packages 
support reads longer than 100 bp, but at some 
point, software designed for longer reads, such as 
BLAT, may be a better fit for downstream analy-
sis. Furthermore, when mapping reads from an 
organism that has diverged significantly from 
its reference genome, how should a program’s 
parameters be adjusted, and can that adjustment 
happen automatically? How useful is mapping 
quality in downstream analysis, and should it 
be computed while aligning reads, as Maq does, 
or later? The answers to each of these questions 
will depend on the type of assay and the scale 
of the analysis, and as long as the technology 
continues to change, the programs will have to 
change rapidly to keep up.
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the SAM tools (http://samtools.sourceforge.net). 
SAM includes a consensus base caller and viewer 
that can be used either with Maq or with Bowtie.

Most read mapping software is designed with 
whole-genome resequencing in mind, but the 
programs can be configured for other assays. The 
manuals for Bowtie and Maq are quite detailed, 
and the array of choices a user can make can be 
daunting. Moreover, the list of programs capa-
ble of short-read mapping is rapidly growing  
(Table 1), and not every program is ideal or 
appropriate for every experiment. Fortunately, 
there are ways to get help. The SeqAnswers 
message board (http://www.seqanswers.com) 
is an excellent resource for novice and expert 
users, frequented by the developers of many 
short-read mapping programs. One of the most 
popular SeqAnswers threads contains a catalog 
of current software for primary analysis and 
visualization of short-read data.

Spliced-read mappers
The spliced alignment problem, in which 
cDNA (from processed mRNA) sequences are 
aligned back to genomic DNA, requires more 
specialized algorithms. Reads sampled from 
exon-exon junctions need to be mapped dif-
ferently from reads that are contained entirely 
within exons (Fig. 2).

To align cDNA reads from RNA-Seq1–3 
experiments, packages such as ERANGE 
(http://woldlab.caltech.edu/rnaseq) use 
the positions of exons and introns within 
known genes as a guide. This allows ERANGE 
to construct the sequences spanning exon-
exon junctions and use them as reference 
sequences, and then to invoke a standard read 
mapper such as Maq or Bowtie to align the 
spliced reads2. Because this approach will not 
discover entirely new splice junctions, some 
studies have used machine learning meth-
ods to predict possible junctions by training 
statistical models using available reference 
annotations8. In contrast, the TopHat spliced-
read mapper (http://tophat.cbcb.umd.edu) 

Maq and Bowtie both report alignments with 
up to two mismatches when run in their default 
modes. In some alignment scenarios, a user may 
need to allow more mismatches. These two pro-
grams were originally designed for reads between 
20 and 40 bp long, and both were optimized for 
human resequencing projects. Even so, Illumina 
sequencers can now produce reads longer than 
100 bp. Additionally, some sequencing projects 
(such as bacterial or fungal genome sequencing) 
produce sequences that have many nucleotide-
level differences with respect to the closest fully 
sequenced genome. Finally, the overall quality 
of reads produced by the new technologies is 
sensitive to factors such as library preparation, 
sequencing protocol and even the temperature 
of the room housing the sequencing machine. 
Thus, it is essential to know how to change the 
various default options for any short-read map-
per and to be able to identify when those defaults 
are no longer appropriate.

Several of the new short-read mappers 
(Table 1) are open source, are simple to install 
and have good documentation and active user 
communities. The installation package for 
Bowtie includes a prebuilt index for Escherichia 
coli and a set of sample E. coli reads. To run the 
program on the sample data, just enter the fol-
lowing on the command line:

bowtie e_coli reads/e_coli_1000.fq

This command will produce a tabular report 
showing each matching read’s identifier, the 
position(s) where it aligns to the reference 
sequence, and the number and location of mis-
matches. Maq reports this same information 
when you run it with the command:

maq.pl easyrun -d outdir  

reference.fasta reads.fastq

For a given experiment, the fraction of reads 
that align to the genome depends on many fac-
tors. Assuming the sequenced DNA does not 
contain many mismatched nucleotides com-
pared to the reference, and assuming the reads 
have passed rudimentary quality filters, most 
mapping software will find an alignment for 
70–75% of the reads. This might seem surpris-
ingly low, but the sequencing technology is still 
immature—and it’s worth noting that Sanger 
sequencing had success rates of less than 80% 
until the late 1990s. Note that many reads will 
align to multiple positions in the genome. Most 
read mappers can be directed to report align-
ments only for reads that map to a unique loca-
tion in the genome.

After aligning the reads, next one might want 
to call SNPs or view the alignments against the 
reference sequence. One package for this task is 

Figure 2  RNA-Seq assays produce short reads 
sequenced from processed mRNAs. Aligning 
these reads to the genome with Bowtie or Maq will 
produce the alignments shown in black but will 
fail to align the blue reads. A spliced-read mapper 
such as TopHat or ERANGE will also report the 
(blue) alignments spanning intron boundaries.
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Figure from (Trapnell & Salzberg, 2009)
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TopHat pipeline

▶ We will look at TopHat (Trapnell et al.,
2009), a commonly used tool for RNA-seq
alignment without transcript or exon reference

▶ All reads are mapped to the reference genome
using Bowtie

▶ These are sequencing reads that
originate from individual exons, i.e., do
not span exon-exon boundaries

▶ Reads that do not map to the genome are set
aside as“initially unmapped reads” (IUM
reads)

▶ These are sequencing reads that
potentially originate from a part of a
transcript that connects two (or more)
exons, i.e., span exon-exon boundaries

[19:40 21/4/2009 Bioinformatics-btp120.tex] Page: 1106 1105–1111
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While the QPALMA pipeline has organizational similarities to
TopHat, there are major differences. First, QPALMA uses a training
step that requires a set of known junctions from the reference
genome. Second, the QPALMA pipeline’s initial mapping phase
uses Vmatch (Abouelhoda et al., 2004), a general-purpose suffix
array-based alignment program. Vmatch is a flexible, fast aligner,
but because it is not designed to map short reads on machines
with small main memories, it is substantially slower than other
specialized short-read mappers. De Bono et al. report that Vmatch
maps reads at around 644 400 reads per CPU hour against the
120 Mbp Arabidopsis thaliana genome. QPALMA’s runtime appears
to be dominated by its splice site scoring algorithm; its authors
estimate that mapping 71 million RNA-Seq reads to A.thaliana
would take 400 CPU hours, which is ∼180 000 reads per CPU hour.

In this article, we describe TopHat, a software package that
identifies splice sites ab initio by large-scale mapping of RNA-Seq
reads. TopHat maps reads to splice sites in a mammalian genome at
a rate of ∼2.2 million reads per CPU hour. Rather than filtering out
possible splice sites with a scoring scheme, TopHat aligns all sites,
relying on an efficient 2-bit-per-base encoding and a data layout
that effectively uses the cache on modern processors. This strategy
works well in practice because TopHat first maps non-junction
reads (those contained within exons) using Bowtie (http://bowtie-
bio.sourceforge.net), an ultra-fast short-read mapping program
(Langmead et al., 2009). Bowtie indexes the reference genome
using a technique borrowed from data-compression, the Burrows–
Wheeler transform (Burrows and Wheeler, 1994; Ferragina and
Manzini, 2001). This memory-efficient data structure allows Bowtie
to scan reads against a mammalian genome using around 2 GB of
memory (within what is commonly available on a standard desktop
computer). Figure 1 illustrates the workflow of TopHat.

2 METHODS
TopHat finds junctions by mapping reads to the reference in two phases. In the
first phase, the pipeline maps all reads to the reference genome using Bowtie.
All reads that do not map to the genome are set aside as ‘initially unmapped
reads’, or IUM reads. Bowtie reports, for each read, one or more alignment
containing no more than a few mismatches (two, by default) in the 5′-most s
bases of the read. The remaining portion of the read on the 3′ end may have
additional mismatches, provided that the Phred-quality-weighted Hamming
distance is less than a specified threshold (70 by default). This policy is
based on the empirical observation that the 5′ end of a read contains fewer
sequencing errors than the 3′ end. (Hillier et al., 2008). TopHat allows Bowtie
to report more than one alignment for a read (default = 10), and suppresses
all alignments for reads that have more than this number. This policy allows
so called ‘multireads’ from genes with multiple copies to be reported, but
excludes alignments to low-complexity sequence, to which failed reads often
align. Low complexity reads are not included in the set of IUM reads; they
are simply discarded.

TopHat then assembles the mapped reads using the assembly module
in Maq (Li et al., 2008). TopHat extracts the sequences for the resulting
islands of contiguous sequence from the sparse consensus, inferring them
to be putative exons. To generate the island sequences, Tophat invokes the
Maq assemble subcommand (with the -s flag) which produces a compact
consensus file containing called bases and the corresponding reference bases.
Because the consensus may include incorrect base calls due to sequencing
errors in low-coverage regions, such islands may be a ‘pseudoconsensus’:
for any low-coverage or low-quality positions, TopHat uses the reference
genome to call the base. Because most reads covering the ends of exons will
also span splice junctions, the ends of exons in the pseudoconsensus will

Fig. 1. The TopHat pipeline. RNA-Seq reads are mapped against the whole
reference genome, and those reads that do not map are set aside. An initial
consensus of mapped regions is computed by Maq. Sequences flanking
potential donor/acceptor splice sites within neighboring regions are joined
to form potential splice junctions. The IUM reads are indexed and aligned
to these splice junction sequences.

initially be covered by few reads, and as a result, an exon’s pseudoconsensus
will likely be missing a small amount of sequence on each end. In order to
capture this sequence along with donor and acceptor sites from flanking
introns, TopHat includes a small amount of flanking sequence from the
reference on both sides of each island (default = 45 bp).

Because genes transcribed at low levels will be sequenced at low coverage,
the exons in these genes may have gaps. TopHat has a parameter that controls
when two distinct but nearby exons should be merged into a single exon.
This parameter defines the length of the longest allowable coverage gap in
a single island. Because introns shorter than 70 bp are rare in mammalian
genomes such as mouse (Pozzoli et al., 2007), any value less than 70 bp for
this parameter is reasonable. To be conservative, the TopHat default is 6 bp.

To map reads to splice junctions, TopHat first enumerates all canonical
donor and acceptor sites within the island sequences (as well as their
reverse complements). Next, it considers all pairings of these sites that could
form canonical (GT–AG) introns between neighboring (but not necessarily
adjacent) islands. Each possible intron is checked against the IUM reads for
reads that span the splice junction, as described below. By default, TopHat
only examines potential introns longer than 70 bp and shorter than 20 000 bp,
but these default minimum and maximum intron lengths can be adjusted
by the user. These values describe the vast majority of known eukaryotic
introns. For example, more than 93% of mouse introns in the UCSC known
gene set fall within this range. However, users willing to make a small
sacrifice in sensitivity will see substantially lower running time by reducing
the maximum intron length. To improve running times and avoid reporting
false positives, the program excludes donor–acceptor pairs that fall entirely
within a single island, unless the island is very deeply sequenced. An example
of a ‘single island’ junction is illustrated in Figure 2. The gene shown has
two alternate transcripts, one of which has an intron that coincides with the
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TopHat pipeline: consensus assembly

▶ Consensus assembly of initially mapped reads
with Maq assembler

▶ Similarly as in de novo assembly, partly
overlapping short sequencing reads define
the assembly (i.e., exons)

▶ Note that in this case the overlaps
between short reads have been found by
aligning against the known reference

▶ For low-quality or low-coverage positions,
use reference genome to call the base

▶ Consensus exons are likely missing some
amount of sequence at ends

→ TopHat considers flanking sequences
from reference genome (default=45bp)

▶ Merge neighboring exons with very short gap
to a single exon
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While the QPALMA pipeline has organizational similarities to
TopHat, there are major differences. First, QPALMA uses a training
step that requires a set of known junctions from the reference
genome. Second, the QPALMA pipeline’s initial mapping phase
uses Vmatch (Abouelhoda et al., 2004), a general-purpose suffix
array-based alignment program. Vmatch is a flexible, fast aligner,
but because it is not designed to map short reads on machines
with small main memories, it is substantially slower than other
specialized short-read mappers. De Bono et al. report that Vmatch
maps reads at around 644 400 reads per CPU hour against the
120 Mbp Arabidopsis thaliana genome. QPALMA’s runtime appears
to be dominated by its splice site scoring algorithm; its authors
estimate that mapping 71 million RNA-Seq reads to A.thaliana
would take 400 CPU hours, which is ∼180 000 reads per CPU hour.

In this article, we describe TopHat, a software package that
identifies splice sites ab initio by large-scale mapping of RNA-Seq
reads. TopHat maps reads to splice sites in a mammalian genome at
a rate of ∼2.2 million reads per CPU hour. Rather than filtering out
possible splice sites with a scoring scheme, TopHat aligns all sites,
relying on an efficient 2-bit-per-base encoding and a data layout
that effectively uses the cache on modern processors. This strategy
works well in practice because TopHat first maps non-junction
reads (those contained within exons) using Bowtie (http://bowtie-
bio.sourceforge.net), an ultra-fast short-read mapping program
(Langmead et al., 2009). Bowtie indexes the reference genome
using a technique borrowed from data-compression, the Burrows–
Wheeler transform (Burrows and Wheeler, 1994; Ferragina and
Manzini, 2001). This memory-efficient data structure allows Bowtie
to scan reads against a mammalian genome using around 2 GB of
memory (within what is commonly available on a standard desktop
computer). Figure 1 illustrates the workflow of TopHat.

2 METHODS
TopHat finds junctions by mapping reads to the reference in two phases. In the
first phase, the pipeline maps all reads to the reference genome using Bowtie.
All reads that do not map to the genome are set aside as ‘initially unmapped
reads’, or IUM reads. Bowtie reports, for each read, one or more alignment
containing no more than a few mismatches (two, by default) in the 5′-most s
bases of the read. The remaining portion of the read on the 3′ end may have
additional mismatches, provided that the Phred-quality-weighted Hamming
distance is less than a specified threshold (70 by default). This policy is
based on the empirical observation that the 5′ end of a read contains fewer
sequencing errors than the 3′ end. (Hillier et al., 2008). TopHat allows Bowtie
to report more than one alignment for a read (default = 10), and suppresses
all alignments for reads that have more than this number. This policy allows
so called ‘multireads’ from genes with multiple copies to be reported, but
excludes alignments to low-complexity sequence, to which failed reads often
align. Low complexity reads are not included in the set of IUM reads; they
are simply discarded.

TopHat then assembles the mapped reads using the assembly module
in Maq (Li et al., 2008). TopHat extracts the sequences for the resulting
islands of contiguous sequence from the sparse consensus, inferring them
to be putative exons. To generate the island sequences, Tophat invokes the
Maq assemble subcommand (with the -s flag) which produces a compact
consensus file containing called bases and the corresponding reference bases.
Because the consensus may include incorrect base calls due to sequencing
errors in low-coverage regions, such islands may be a ‘pseudoconsensus’:
for any low-coverage or low-quality positions, TopHat uses the reference
genome to call the base. Because most reads covering the ends of exons will
also span splice junctions, the ends of exons in the pseudoconsensus will

Fig. 1. The TopHat pipeline. RNA-Seq reads are mapped against the whole
reference genome, and those reads that do not map are set aside. An initial
consensus of mapped regions is computed by Maq. Sequences flanking
potential donor/acceptor splice sites within neighboring regions are joined
to form potential splice junctions. The IUM reads are indexed and aligned
to these splice junction sequences.

initially be covered by few reads, and as a result, an exon’s pseudoconsensus
will likely be missing a small amount of sequence on each end. In order to
capture this sequence along with donor and acceptor sites from flanking
introns, TopHat includes a small amount of flanking sequence from the
reference on both sides of each island (default = 45 bp).

Because genes transcribed at low levels will be sequenced at low coverage,
the exons in these genes may have gaps. TopHat has a parameter that controls
when two distinct but nearby exons should be merged into a single exon.
This parameter defines the length of the longest allowable coverage gap in
a single island. Because introns shorter than 70 bp are rare in mammalian
genomes such as mouse (Pozzoli et al., 2007), any value less than 70 bp for
this parameter is reasonable. To be conservative, the TopHat default is 6 bp.

To map reads to splice junctions, TopHat first enumerates all canonical
donor and acceptor sites within the island sequences (as well as their
reverse complements). Next, it considers all pairings of these sites that could
form canonical (GT–AG) introns between neighboring (but not necessarily
adjacent) islands. Each possible intron is checked against the IUM reads for
reads that span the splice junction, as described below. By default, TopHat
only examines potential introns longer than 70 bp and shorter than 20 000 bp,
but these default minimum and maximum intron lengths can be adjusted
by the user. These values describe the vast majority of known eukaryotic
introns. For example, more than 93% of mouse introns in the UCSC known
gene set fall within this range. However, users willing to make a small
sacrifice in sensitivity will see substantially lower running time by reducing
the maximum intron length. To improve running times and avoid reporting
false positives, the program excludes donor–acceptor pairs that fall entirely
within a single island, unless the island is very deeply sequenced. An example
of a ‘single island’ junction is illustrated in Figure 2. The gene shown has
two alternate transcripts, one of which has an intron that coincides with the
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TopHat pipeline: splice junctions

▶ To map reads to splice junctions:
▶ Enumerate all canonical donor and acceptor splicing sites (GT, AG, etc. di-nucleotides)

between consecutive exons
▶ Consider all possible pairings between donor-acceptor sites (allowed intron length is an

adjustable parameter)
▶ For each candidate splice junction, find initially unmapped reads that span them:

seed-and-extend approach

[19:40 21/4/2009 Bioinformatics-btp120.tex] Page: 1107 1105–1111
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Fig. 2. An intron entirely overlapped by the 5′-UTR of another transcript. Both isoforms are present in the brain tissue RNA sample. The top track is the
normalized uniquely mappable read coverage reported by ERANGE for this region (Mortazavi et al., 2008). The lack of a large coverage gap causes TopHat
to report a single island containing both exons. TopHat looks for introns within single islands in order to detect this junction.

UTR of the other transcript. The figure shows the normalized coverage of
the intron and its flanking exons by uniquely mappable reads as reported by
Mortazavi et al. Both transcripts are clearly present in the RNA-Seq sample,
and TopHat reports the entire region as a single island. In order to detect such
junctions without sacrificing performance and specificity, TopHat looks for
introns within islands that are deeply sequenced. During the island extraction
phase of the pipeline, the algorithm computes the following statistic for each
island spanning coordinates i to j in the map:

Dij =
∑j

m=i dm

j− i
· 1∑n

m=0 dm
(1)

where dm is the depth of coverage at coordinate m in the Bowtie map, and
n is the length of the reference genome. When scaled to range [0, 1000],
this value represents the normalized depth of coverage for an island. We
observed that single-island junctions tend to fall within islands with high D
(data not shown). TopHat thus looks for junctions contained in islands with
D≥300, though this parameter can be changed by the user. A high D -value
will prevent TopHat from looking for junctions within single islands, which
will improve running time. A low D -value will force TopHat to look within
many islands, slowing the pipeline, but potentially finding more junctions.

For each splice junction, Tophat searches the IUM reads in order to find
reads that span junctions using a seed-and-extend strategy. The pipeline
indexes the IUM reads using a simple lookup table to amortize the cost of
searching for a spliced alignment over many reads. As illustrated in Figure 3,
TopHat finds any reads that span splice junctions by at least k bases on each
side (where k =5 bp by default), so the table is keyed by 2k-mers, where each
2k-mer is associated with reads that contain that 2k-mer. For each read, the
table contains (s−2k+1) entries corresponding to possible positions where
a splice may fall within a read, where s is the length of the high-quality
region on the 5′ end (default = 28 bp). Users with longer reads may wish
to increase s to improve sensitivity. Lowering s will improve running time,
but may reduce sensitivity. Increasing k will improve running time, but may
limit TopHat to finding junctions only in highly expressed (and thus deeply
covered) genes. Reducing it will dramatically increase running time, and
while sensitivity will improve, the program may report more false positives.
Next TopHat takes each possible splice junction and makes a 2k-mer ‘seed’

Fig. 3. The seed and extend alignment used to match reads to possible splice
sites. For each possible splice site, a seed is formed by combining a small
amount of sequence upstream of the donor and downstream of the acceptor.
This seed, shown in dark gray, is used to query the index of reads that were
not initially mapped by Bowtie. Any read containing the seed is checked for
a complete alignment to the exons on either side of the possible splice. In the
light gray portion of the alignment, TopHat allows a user-specified number
of mismatches. Because reads typically contain low-quality base calls on
their 3′ ends, TopHat only examines the first 28 bp on the 5′ end of each read
by default.

for it by concatenating the k bases downstream of the acceptor to the k bases
upstream of the donor. The IUM read index is then queried with this 2k-mer
to find all reads which contain the seed. This exact 2k-mer match is extended
to find all reads that span the splice junction. To extend the exact match for
the seed region, TopHat aligns the portions of the read to the left and right
of the seed with the left island and right island, respectively, allowing a
user-specified number of mismatches. TopHat will miss spliced alignments
to reads with mismatches in the seed region of the splice junction, but we
expect this tradeoff between speed and sensitivity will be favorable for most
users.

1107

 at H
elsinki U

niversity of Technology on April 4, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

Figure from (Trapnell et al., 2009)



15/ 31

TopHat pipeline: seed-and-extend

▶ Seed-and-extend:
▶ Pre-compute an index of reads: a lookup table based on partly overlapping 2k-mer keys

(=2k long nucleotide subsequences) in the middle of their high-quality region (default k = 5)
▶ For candidate splice junction, concatenate the k bases downstream of the acceptor to the k

bases upstream
▶ Query this 2k-mer against the read index (exact seed match, no mismatch allowed)
▶ Align remaining part of read left and right of the exact match (allowing fixed number of

mismatches)

[19:40 21/4/2009 Bioinformatics-btp120.tex] Page: 1107 1105–1111
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Fig. 2. An intron entirely overlapped by the 5′-UTR of another transcript. Both isoforms are present in the brain tissue RNA sample. The top track is the
normalized uniquely mappable read coverage reported by ERANGE for this region (Mortazavi et al., 2008). The lack of a large coverage gap causes TopHat
to report a single island containing both exons. TopHat looks for introns within single islands in order to detect this junction.

UTR of the other transcript. The figure shows the normalized coverage of
the intron and its flanking exons by uniquely mappable reads as reported by
Mortazavi et al. Both transcripts are clearly present in the RNA-Seq sample,
and TopHat reports the entire region as a single island. In order to detect such
junctions without sacrificing performance and specificity, TopHat looks for
introns within islands that are deeply sequenced. During the island extraction
phase of the pipeline, the algorithm computes the following statistic for each
island spanning coordinates i to j in the map:

Dij =
∑j

m=i dm

j− i
· 1∑n

m=0 dm
(1)

where dm is the depth of coverage at coordinate m in the Bowtie map, and
n is the length of the reference genome. When scaled to range [0, 1000],
this value represents the normalized depth of coverage for an island. We
observed that single-island junctions tend to fall within islands with high D
(data not shown). TopHat thus looks for junctions contained in islands with
D≥300, though this parameter can be changed by the user. A high D -value
will prevent TopHat from looking for junctions within single islands, which
will improve running time. A low D -value will force TopHat to look within
many islands, slowing the pipeline, but potentially finding more junctions.

For each splice junction, Tophat searches the IUM reads in order to find
reads that span junctions using a seed-and-extend strategy. The pipeline
indexes the IUM reads using a simple lookup table to amortize the cost of
searching for a spliced alignment over many reads. As illustrated in Figure 3,
TopHat finds any reads that span splice junctions by at least k bases on each
side (where k =5 bp by default), so the table is keyed by 2k-mers, where each
2k-mer is associated with reads that contain that 2k-mer. For each read, the
table contains (s−2k+1) entries corresponding to possible positions where
a splice may fall within a read, where s is the length of the high-quality
region on the 5′ end (default = 28 bp). Users with longer reads may wish
to increase s to improve sensitivity. Lowering s will improve running time,
but may reduce sensitivity. Increasing k will improve running time, but may
limit TopHat to finding junctions only in highly expressed (and thus deeply
covered) genes. Reducing it will dramatically increase running time, and
while sensitivity will improve, the program may report more false positives.
Next TopHat takes each possible splice junction and makes a 2k-mer ‘seed’

Fig. 3. The seed and extend alignment used to match reads to possible splice
sites. For each possible splice site, a seed is formed by combining a small
amount of sequence upstream of the donor and downstream of the acceptor.
This seed, shown in dark gray, is used to query the index of reads that were
not initially mapped by Bowtie. Any read containing the seed is checked for
a complete alignment to the exons on either side of the possible splice. In the
light gray portion of the alignment, TopHat allows a user-specified number
of mismatches. Because reads typically contain low-quality base calls on
their 3′ ends, TopHat only examines the first 28 bp on the 5′ end of each read
by default.

for it by concatenating the k bases downstream of the acceptor to the k bases
upstream of the donor. The IUM read index is then queried with this 2k-mer
to find all reads which contain the seed. This exact 2k-mer match is extended
to find all reads that span the splice junction. To extend the exact match for
the seed region, TopHat aligns the portions of the read to the left and right
of the seed with the left island and right island, respectively, allowing a
user-specified number of mismatches. TopHat will miss spliced alignments
to reads with mismatches in the seed region of the splice junction, but we
expect this tradeoff between speed and sensitivity will be favorable for most
users.
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RNA-seq read alignment
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does not rely on annotations. Instead, it 
uses Bowtie (in an initial alignment pass) to 
identify exons that fully contain some of the 
reads, and then aligns the remaining reads 
to junctions between those exons9. Another 
program, G-Mo.R-Se (http://www.genoscope.
cns.fr/externe/gmorse), performs a similar 
spliced alignment while constructing gene 
models from RNA-Seq data10.

Limitations and open problems
The current solutions for short-read mapping all 
have limitations. Mapping programs such as Maq 
and Bowtie offer very limited support for align-
ing reads with insertions or deletions (indels). 
Some read mappers, such as SHRiMP (http://
compbio.cs.toronto.edu/shrimp), support ABI’s 
‘color space’ sequence representation, but most 
do not. The spliced alignment programs suffer 
from these same problems and add a few of their 
own. Annotation-based methods are of course 
only as good as the annotations, and many 
organisms have annotations supported only 
by homology or computational predictions. 
Machine learning methods will perform poorly 
if they are trained on incorrect annotations, and 
they are prone to overtraining.

Many challenges and questions remain for 
developers of read mapping software. As all the 
sequencing machine vendors are trying to pro-
duce longer reads, will the short-read mapping 
programs scale well as the reads get longer? Maq, 
Bowtie and several other short-read packages 
support reads longer than 100 bp, but at some 
point, software designed for longer reads, such as 
BLAT, may be a better fit for downstream analy-
sis. Furthermore, when mapping reads from an 
organism that has diverged significantly from 
its reference genome, how should a program’s 
parameters be adjusted, and can that adjustment 
happen automatically? How useful is mapping 
quality in downstream analysis, and should it 
be computed while aligning reads, as Maq does, 
or later? The answers to each of these questions 
will depend on the type of assay and the scale 
of the analysis, and as long as the technology 
continues to change, the programs will have to 
change rapidly to keep up.
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the SAM tools (http://samtools.sourceforge.net). 
SAM includes a consensus base caller and viewer 
that can be used either with Maq or with Bowtie.

Most read mapping software is designed with 
whole-genome resequencing in mind, but the 
programs can be configured for other assays. The 
manuals for Bowtie and Maq are quite detailed, 
and the array of choices a user can make can be 
daunting. Moreover, the list of programs capa-
ble of short-read mapping is rapidly growing  
(Table 1), and not every program is ideal or 
appropriate for every experiment. Fortunately, 
there are ways to get help. The SeqAnswers 
message board (http://www.seqanswers.com) 
is an excellent resource for novice and expert 
users, frequented by the developers of many 
short-read mapping programs. One of the most 
popular SeqAnswers threads contains a catalog 
of current software for primary analysis and 
visualization of short-read data.

Spliced-read mappers
The spliced alignment problem, in which 
cDNA (from processed mRNA) sequences are 
aligned back to genomic DNA, requires more 
specialized algorithms. Reads sampled from 
exon-exon junctions need to be mapped dif-
ferently from reads that are contained entirely 
within exons (Fig. 2).

To align cDNA reads from RNA-Seq1–3 
experiments, packages such as ERANGE 
(http://woldlab.caltech.edu/rnaseq) use 
the positions of exons and introns within 
known genes as a guide. This allows ERANGE 
to construct the sequences spanning exon-
exon junctions and use them as reference 
sequences, and then to invoke a standard read 
mapper such as Maq or Bowtie to align the 
spliced reads2. Because this approach will not 
discover entirely new splice junctions, some 
studies have used machine learning meth-
ods to predict possible junctions by training 
statistical models using available reference 
annotations8. In contrast, the TopHat spliced-
read mapper (http://tophat.cbcb.umd.edu) 

Maq and Bowtie both report alignments with 
up to two mismatches when run in their default 
modes. In some alignment scenarios, a user may 
need to allow more mismatches. These two pro-
grams were originally designed for reads between 
20 and 40 bp long, and both were optimized for 
human resequencing projects. Even so, Illumina 
sequencers can now produce reads longer than 
100 bp. Additionally, some sequencing projects 
(such as bacterial or fungal genome sequencing) 
produce sequences that have many nucleotide-
level differences with respect to the closest fully 
sequenced genome. Finally, the overall quality 
of reads produced by the new technologies is 
sensitive to factors such as library preparation, 
sequencing protocol and even the temperature 
of the room housing the sequencing machine. 
Thus, it is essential to know how to change the 
various default options for any short-read map-
per and to be able to identify when those defaults 
are no longer appropriate.

Several of the new short-read mappers 
(Table 1) are open source, are simple to install 
and have good documentation and active user 
communities. The installation package for 
Bowtie includes a prebuilt index for Escherichia 
coli and a set of sample E. coli reads. To run the 
program on the sample data, just enter the fol-
lowing on the command line:

bowtie e_coli reads/e_coli_1000.fq

This command will produce a tabular report 
showing each matching read’s identifier, the 
position(s) where it aligns to the reference 
sequence, and the number and location of mis-
matches. Maq reports this same information 
when you run it with the command:

maq.pl easyrun -d outdir  

reference.fasta reads.fastq

For a given experiment, the fraction of reads 
that align to the genome depends on many fac-
tors. Assuming the sequenced DNA does not 
contain many mismatched nucleotides com-
pared to the reference, and assuming the reads 
have passed rudimentary quality filters, most 
mapping software will find an alignment for 
70–75% of the reads. This might seem surpris-
ingly low, but the sequencing technology is still 
immature—and it’s worth noting that Sanger 
sequencing had success rates of less than 80% 
until the late 1990s. Note that many reads will 
align to multiple positions in the genome. Most 
read mappers can be directed to report align-
ments only for reads that map to a unique loca-
tion in the genome.

After aligning the reads, next one might want 
to call SNPs or view the alignments against the 
reference sequence. One package for this task is 

Figure 2  RNA-Seq assays produce short reads 
sequenced from processed mRNAs. Aligning 
these reads to the genome with Bowtie or Maq will 
produce the alignments shown in black but will 
fail to align the blue reads. A spliced-read mapper 
such as TopHat or ERANGE will also report the 
(blue) alignments spanning intron boundaries.
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Simplified gene expression counting schemes

▶ Expression of a gene: sum of the expression of all its transcript variants / isoforms
▶ Computing isoform abundances can be challenging

▶ Simplified counting schemes without computing isoform abundances
▶ Exon union method: count sequencing reads mapped to any of the exons
▶ Exon intersection method: count reads mapped to constitutive exons

Reconstruction strategies compared. Both genome-guided and 
genome-independent algorithms have been reported to accurately 
reconstruct thousands of transcripts and many alternative splice 
forms28,29,53,55. The question as to which strategy is most suitable 
for the task at hand is strongly governed by the particular biologi-
cal question to be answered. Genome-independent methods are 
the obvious choice for organisms without a reference sequence, 
whereas the increased sensitivity of genome-guided approaches 
makes them the obvious choice for annotating organisms with 
a reference genome. In the case of genomes or transcriptomes 
that have undergone major rearrangements, such as in cancer 
cells26, the answer to the above question becomes less clear and 
depends on the analytical goal. In many cases, a hybrid approach 
incorporating both the genome-independent and genome-
guided strategies might work best for capturing known informa-
tion as well as capturing novel variation. In practice, genome- 
independent methods require considerable computational 
resources (~650 CPU hours and >16 gigabytes of random-access 

isoforms, Cufflinks uses read coverage across each path to decide 
which combination of paths is most likely to originate from the 
same RNA29 (Fig. 2b).

Scripture and Cufflinks have similar computational require-
ments, and both can be run on a personal computer. Both assem-
ble similar transcripts at the high expression levels but differ 
substantially for lower expressed transcripts where Cufflinks 
reports 3  more loci (70,000 versus 25,000) most of which do 
not pass the statistical significance threshold used by Scripture 
(Supplementary Table 1 and Supplementary Fig. 3). In contrast, 
Scripture reports more isoforms per locus (average of 1.6 ver-
sus 1.2) with difference arising only for a handful of transcripts 
(Supplementary Table 1). In the most extreme case, Scripture 
reports over 300 isoforms for a single locus whereas Cufflinks 
reports 11 isoforms for the same gene.

Genome-independent reconstruction. Rather than mapping 
reads to a reference sequence first, genome-independent tran-
scriptome reconstruction algorithms such as transAbyss53 use 
the reads to directly build consensus transcripts53–55. Consensus 
transcripts can then be mapped to a genome or aligned to a 
gene or protein database for annotation purposes. The central 
challenge for genome-independent approaches is to partition 
reads into disjoint components, which represent all isoforms of 
a gene. A commonly used strategy is to first build a de Bruijn 
graph, which models overlapping subsequences, termed ‘k-mers’  
(k consecutive nucleotides), rather than reads55–58. This reduces 
the complexity associated with handling millions of reads to 
a fixed number of possible k-mers57,58. The overlaps of k – 1 
bases between these k-mers constitute the graph of all possible 
sequences that can be constructed. Next, paths are traversed in 
the graph, guided by read and paired-end coverage levels, elimi-
nating false branch points introduced by k-mers that are shared 
by different transcripts but not supported by reads and paired 
ends. Each remaining path through the graph is then reported as 
a separate transcript (Fig. 2).

Although genome-independent reconstruction is conceptu-
ally simple, there are two major complications: distinguishing 
sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. Unlike the mapping-first 
strategy, sequencing errors introduce branch points in the graph 
that increase its complexity. To eliminate these artifacts, genome-
independent methods look at the coverage of different paths in the 
graph and apply a coverage cutoff to decide when to follow a path 
or when to remove it53,59. In practice, the choice of the k-mer length 
for this analysis can greatly affect the assembly53. Smaller values of k 
result in a larger number of overlapping nodes and a more complex 
graph, whereas larger values of k reduce the number of overlaps and 
results in a simpler graph structure. An optimal choice of k depends 
on coverage: when coverage is low, small values of k are preferable 
because they increase the number of overlapping reads contributing 
k-mers to the graph. But when coverage is large, small values of k 
are overly sensitive to sequencing errors and other artifacts, yield-
ing very complex graph structures59.

To cope with the variability in transcript abundance intrinsic 
to expression data, several methods, such as transABySS, use a 
variable k-mer strategy to gain power across expression levels to 
assemble transcripts53,55, albeit at the expense of CPU power and 
requiring parallel execution.
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Figure 3 | An overview of gene expression quantification with RNA-seq. 
(a) Illustration of transcripts of different lengths with different read 
coverage levels (left) as well as total read counts observed for each 
transcript (middle) and FPKM-normalized read counts (right). (b) Reads 
from alternatively spliced genes may be attributable to a single isoform 
or more than one isoform. Reads are color-coded when their isoform of 
origin is clear. Black reads indicate reads with uncertain origin. ‘Isoform 
expression methods’ estimate isoform abundances that best explain the 
observed read counts under a generative model. Samples near the original 
maximum likelihood estimate (dashed line) improve the robustness of the 
estimate and provide a confidence interval around each isoform’s abundance. 
(c) For a gene with two expressed isoforms, exons are colored according to 
the isoform of origin. Two simplified gene models used for quantification 
purposes, spliced transcripts from each model and their associated lengths, 
are shown to the right. The ‘exon union model’ (top) uses exons from all 
isoforms. The ‘exon intersection model’ (bottom) uses only exons common 
to all gene isoforms. (d) Comparison of true versus estimated FPKM values in 
simulated RNA-seq data. The x = y line in red is included as a reference.
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Simplified gene expression counting schemes

Disadvantages of the simplified models

▶ The union model tends to underestimate expression for alternatively spliced genes
▶ Because it overestimates the length of isoforms: we will see the reason for this later

▶ The intersection can reduce statistical power for differential expression analysis
▶ Because a fraction of mapped sequencing reads are ignored

Reconstruction strategies compared. Both genome-guided and 
genome-independent algorithms have been reported to accurately 
reconstruct thousands of transcripts and many alternative splice 
forms28,29,53,55. The question as to which strategy is most suitable 
for the task at hand is strongly governed by the particular biologi-
cal question to be answered. Genome-independent methods are 
the obvious choice for organisms without a reference sequence, 
whereas the increased sensitivity of genome-guided approaches 
makes them the obvious choice for annotating organisms with 
a reference genome. In the case of genomes or transcriptomes 
that have undergone major rearrangements, such as in cancer 
cells26, the answer to the above question becomes less clear and 
depends on the analytical goal. In many cases, a hybrid approach 
incorporating both the genome-independent and genome-
guided strategies might work best for capturing known informa-
tion as well as capturing novel variation. In practice, genome- 
independent methods require considerable computational 
resources (~650 CPU hours and >16 gigabytes of random-access 

isoforms, Cufflinks uses read coverage across each path to decide 
which combination of paths is most likely to originate from the 
same RNA29 (Fig. 2b).

Scripture and Cufflinks have similar computational require-
ments, and both can be run on a personal computer. Both assem-
ble similar transcripts at the high expression levels but differ 
substantially for lower expressed transcripts where Cufflinks 
reports 3  more loci (70,000 versus 25,000) most of which do 
not pass the statistical significance threshold used by Scripture 
(Supplementary Table 1 and Supplementary Fig. 3). In contrast, 
Scripture reports more isoforms per locus (average of 1.6 ver-
sus 1.2) with difference arising only for a handful of transcripts 
(Supplementary Table 1). In the most extreme case, Scripture 
reports over 300 isoforms for a single locus whereas Cufflinks 
reports 11 isoforms for the same gene.

Genome-independent reconstruction. Rather than mapping 
reads to a reference sequence first, genome-independent tran-
scriptome reconstruction algorithms such as transAbyss53 use 
the reads to directly build consensus transcripts53–55. Consensus 
transcripts can then be mapped to a genome or aligned to a 
gene or protein database for annotation purposes. The central 
challenge for genome-independent approaches is to partition 
reads into disjoint components, which represent all isoforms of 
a gene. A commonly used strategy is to first build a de Bruijn 
graph, which models overlapping subsequences, termed ‘k-mers’  
(k consecutive nucleotides), rather than reads55–58. This reduces 
the complexity associated with handling millions of reads to 
a fixed number of possible k-mers57,58. The overlaps of k – 1 
bases between these k-mers constitute the graph of all possible 
sequences that can be constructed. Next, paths are traversed in 
the graph, guided by read and paired-end coverage levels, elimi-
nating false branch points introduced by k-mers that are shared 
by different transcripts but not supported by reads and paired 
ends. Each remaining path through the graph is then reported as 
a separate transcript (Fig. 2).

Although genome-independent reconstruction is conceptu-
ally simple, there are two major complications: distinguishing 
sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. Unlike the mapping-first 
strategy, sequencing errors introduce branch points in the graph 
that increase its complexity. To eliminate these artifacts, genome-
independent methods look at the coverage of different paths in the 
graph and apply a coverage cutoff to decide when to follow a path 
or when to remove it53,59. In practice, the choice of the k-mer length 
for this analysis can greatly affect the assembly53. Smaller values of k 
result in a larger number of overlapping nodes and a more complex 
graph, whereas larger values of k reduce the number of overlaps and 
results in a simpler graph structure. An optimal choice of k depends 
on coverage: when coverage is low, small values of k are preferable 
because they increase the number of overlapping reads contributing 
k-mers to the graph. But when coverage is large, small values of k 
are overly sensitive to sequencing errors and other artifacts, yield-
ing very complex graph structures59.

To cope with the variability in transcript abundance intrinsic 
to expression data, several methods, such as transABySS, use a 
variable k-mer strategy to gain power across expression levels to 
assemble transcripts53,55, albeit at the expense of CPU power and 
requiring parallel execution.

c

b
Isoform 1

Isoform 2

Isoform 1 Isoform 2

Confidence interval

Li
ke

lih
oo

d 
of

 is
of

or
m

 2

100%0% 25%

25%

Exon union method

Exon intersection method

Isoform 1

Isoform 2

True FPKM

Es
tim

at
ed

 F
P

K
M

d

Transcript expression method

a

FP
K

MLow 

Short transcript

High 

Long transcript

R
ea

d 
co

un
t

21

43
1 2 3 4

Transcript model
Exon union model

10410310210110010−210−2

104

103

102

101

100

10−1

10−2

1 2 3 4

Figure 3 | An overview of gene expression quantification with RNA-seq. 
(a) Illustration of transcripts of different lengths with different read 
coverage levels (left) as well as total read counts observed for each 
transcript (middle) and FPKM-normalized read counts (right). (b) Reads 
from alternatively spliced genes may be attributable to a single isoform 
or more than one isoform. Reads are color-coded when their isoform of 
origin is clear. Black reads indicate reads with uncertain origin. ‘Isoform 
expression methods’ estimate isoform abundances that best explain the 
observed read counts under a generative model. Samples near the original 
maximum likelihood estimate (dashed line) improve the robustness of the 
estimate and provide a confidence interval around each isoform’s abundance. 
(c) For a gene with two expressed isoforms, exons are colored according to 
the isoform of origin. Two simplified gene models used for quantification 
purposes, spliced transcripts from each model and their associated lengths, 
are shown to the right. The ‘exon union model’ (top) uses exons from all 
isoforms. The ‘exon intersection model’ (bottom) uses only exons common 
to all gene isoforms. (d) Comparison of true versus estimated FPKM values in 
simulated RNA-seq data. The x = y line in red is included as a reference.
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Reconstruction strategies compared. Both genome-guided and 
genome-independent algorithms have been reported to accurately 
reconstruct thousands of transcripts and many alternative splice 
forms28,29,53,55. The question as to which strategy is most suitable 
for the task at hand is strongly governed by the particular biologi-
cal question to be answered. Genome-independent methods are 
the obvious choice for organisms without a reference sequence, 
whereas the increased sensitivity of genome-guided approaches 
makes them the obvious choice for annotating organisms with 
a reference genome. In the case of genomes or transcriptomes 
that have undergone major rearrangements, such as in cancer 
cells26, the answer to the above question becomes less clear and 
depends on the analytical goal. In many cases, a hybrid approach 
incorporating both the genome-independent and genome-
guided strategies might work best for capturing known informa-
tion as well as capturing novel variation. In practice, genome- 
independent methods require considerable computational 
resources (~650 CPU hours and >16 gigabytes of random-access 

isoforms, Cufflinks uses read coverage across each path to decide 
which combination of paths is most likely to originate from the 
same RNA29 (Fig. 2b).

Scripture and Cufflinks have similar computational require-
ments, and both can be run on a personal computer. Both assem-
ble similar transcripts at the high expression levels but differ 
substantially for lower expressed transcripts where Cufflinks 
reports 3  more loci (70,000 versus 25,000) most of which do 
not pass the statistical significance threshold used by Scripture 
(Supplementary Table 1 and Supplementary Fig. 3). In contrast, 
Scripture reports more isoforms per locus (average of 1.6 ver-
sus 1.2) with difference arising only for a handful of transcripts 
(Supplementary Table 1). In the most extreme case, Scripture 
reports over 300 isoforms for a single locus whereas Cufflinks 
reports 11 isoforms for the same gene.

Genome-independent reconstruction. Rather than mapping 
reads to a reference sequence first, genome-independent tran-
scriptome reconstruction algorithms such as transAbyss53 use 
the reads to directly build consensus transcripts53–55. Consensus 
transcripts can then be mapped to a genome or aligned to a 
gene or protein database for annotation purposes. The central 
challenge for genome-independent approaches is to partition 
reads into disjoint components, which represent all isoforms of 
a gene. A commonly used strategy is to first build a de Bruijn 
graph, which models overlapping subsequences, termed ‘k-mers’  
(k consecutive nucleotides), rather than reads55–58. This reduces 
the complexity associated with handling millions of reads to 
a fixed number of possible k-mers57,58. The overlaps of k – 1 
bases between these k-mers constitute the graph of all possible 
sequences that can be constructed. Next, paths are traversed in 
the graph, guided by read and paired-end coverage levels, elimi-
nating false branch points introduced by k-mers that are shared 
by different transcripts but not supported by reads and paired 
ends. Each remaining path through the graph is then reported as 
a separate transcript (Fig. 2).

Although genome-independent reconstruction is conceptu-
ally simple, there are two major complications: distinguishing 
sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. Unlike the mapping-first 
strategy, sequencing errors introduce branch points in the graph 
that increase its complexity. To eliminate these artifacts, genome-
independent methods look at the coverage of different paths in the 
graph and apply a coverage cutoff to decide when to follow a path 
or when to remove it53,59. In practice, the choice of the k-mer length 
for this analysis can greatly affect the assembly53. Smaller values of k 
result in a larger number of overlapping nodes and a more complex 
graph, whereas larger values of k reduce the number of overlaps and 
results in a simpler graph structure. An optimal choice of k depends 
on coverage: when coverage is low, small values of k are preferable 
because they increase the number of overlapping reads contributing 
k-mers to the graph. But when coverage is large, small values of k 
are overly sensitive to sequencing errors and other artifacts, yield-
ing very complex graph structures59.

To cope with the variability in transcript abundance intrinsic 
to expression data, several methods, such as transABySS, use a 
variable k-mer strategy to gain power across expression levels to 
assemble transcripts53,55, albeit at the expense of CPU power and 
requiring parallel execution.
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Figure 3 | An overview of gene expression quantification with RNA-seq. 
(a) Illustration of transcripts of different lengths with different read 
coverage levels (left) as well as total read counts observed for each 
transcript (middle) and FPKM-normalized read counts (right). (b) Reads 
from alternatively spliced genes may be attributable to a single isoform 
or more than one isoform. Reads are color-coded when their isoform of 
origin is clear. Black reads indicate reads with uncertain origin. ‘Isoform 
expression methods’ estimate isoform abundances that best explain the 
observed read counts under a generative model. Samples near the original 
maximum likelihood estimate (dashed line) improve the robustness of the 
estimate and provide a confidence interval around each isoform’s abundance. 
(c) For a gene with two expressed isoforms, exons are colored according to 
the isoform of origin. Two simplified gene models used for quantification 
purposes, spliced transcripts from each model and their associated lengths, 
are shown to the right. The ‘exon union model’ (top) uses exons from all 
isoforms. The ‘exon intersection model’ (bottom) uses only exons common 
to all gene isoforms. (d) Comparison of true versus estimated FPKM values in 
simulated RNA-seq data. The x = y line in red is included as a reference.
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Gene expression quantification

▶ Basic idea: read count corresponds to the expression level

▶ Basic assumption

θi = P(“randomly sample a sequencing read from gene” i) =
1

Z
µiℓi ,

where
▶ µi is the expression level (abundance) of gene i
▶ ℓi is the length of gene i (e.g. the total length of constitutive exons for the intersection

method)
▶ Normalizing constant is Z =

∑
i µiℓi
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Gene expression quantification

▶ Use the so-called frequency estimator to estimate the probability that a read originates
from a given gene i

θ̂i =
ki
N
,

where
▶ ki is the number of sequencing reads mapping to gene i
▶ N is the total number of mapped reads

▶ Convert the estimates into expression values by normalizing by the gene length

▶ Recall from the previous slide that θi =
1
Z µiℓi , thus θi ∝ µiℓi , which we can solve for µi

µ̂i ∝
θ̂i
ℓi

=
ki
Nℓi
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RPKM: reads per kilobases per million reads

▶ The number of reads that map to a specific gene i depends on
▶ The total number of mapped reads N
▶ The length of the gene ℓi

▶ By normalizing with these two terms, N and ℓi , we obtain a common unit to quantify gene
expression
▶ Across different experiments that may have different N
▶ Across different genes that may have different ℓi

▶ RPKM: reads per kilobases per million reads

RPKMi =
ki

ℓi
103 ·

N
106

= 109
ki
ℓiN

= 109µ̂i

▶ RPKM is for single-end reads

▶ FPMK is essentially the same as RPKM but defined for paired-end reads such that each
read-pair is counted only once
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Gene expression quantification: illustration

▶ Consider 4 transcripts with different lengths and expression levels illustrated below (left)

▶ The read counts normalized by the transcript length using the RPKM (or FPKM) metric
(right)
▶ Transcripts 2 and 4 have comparable read-counts, transcript 2 has a significantly higher

normalized expression level
▶ After normalization, transcripts 3 and 4 have similar expression values

Reconstruction strategies compared. Both genome-guided and 
genome-independent algorithms have been reported to accurately 
reconstruct thousands of transcripts and many alternative splice 
forms28,29,53,55. The question as to which strategy is most suitable 
for the task at hand is strongly governed by the particular biologi-
cal question to be answered. Genome-independent methods are 
the obvious choice for organisms without a reference sequence, 
whereas the increased sensitivity of genome-guided approaches 
makes them the obvious choice for annotating organisms with 
a reference genome. In the case of genomes or transcriptomes 
that have undergone major rearrangements, such as in cancer 
cells26, the answer to the above question becomes less clear and 
depends on the analytical goal. In many cases, a hybrid approach 
incorporating both the genome-independent and genome-
guided strategies might work best for capturing known informa-
tion as well as capturing novel variation. In practice, genome- 
independent methods require considerable computational 
resources (~650 CPU hours and >16 gigabytes of random-access 

isoforms, Cufflinks uses read coverage across each path to decide 
which combination of paths is most likely to originate from the 
same RNA29 (Fig. 2b).

Scripture and Cufflinks have similar computational require-
ments, and both can be run on a personal computer. Both assem-
ble similar transcripts at the high expression levels but differ 
substantially for lower expressed transcripts where Cufflinks 
reports 3  more loci (70,000 versus 25,000) most of which do 
not pass the statistical significance threshold used by Scripture 
(Supplementary Table 1 and Supplementary Fig. 3). In contrast, 
Scripture reports more isoforms per locus (average of 1.6 ver-
sus 1.2) with difference arising only for a handful of transcripts 
(Supplementary Table 1). In the most extreme case, Scripture 
reports over 300 isoforms for a single locus whereas Cufflinks 
reports 11 isoforms for the same gene.

Genome-independent reconstruction. Rather than mapping 
reads to a reference sequence first, genome-independent tran-
scriptome reconstruction algorithms such as transAbyss53 use 
the reads to directly build consensus transcripts53–55. Consensus 
transcripts can then be mapped to a genome or aligned to a 
gene or protein database for annotation purposes. The central 
challenge for genome-independent approaches is to partition 
reads into disjoint components, which represent all isoforms of 
a gene. A commonly used strategy is to first build a de Bruijn 
graph, which models overlapping subsequences, termed ‘k-mers’  
(k consecutive nucleotides), rather than reads55–58. This reduces 
the complexity associated with handling millions of reads to 
a fixed number of possible k-mers57,58. The overlaps of k – 1 
bases between these k-mers constitute the graph of all possible 
sequences that can be constructed. Next, paths are traversed in 
the graph, guided by read and paired-end coverage levels, elimi-
nating false branch points introduced by k-mers that are shared 
by different transcripts but not supported by reads and paired 
ends. Each remaining path through the graph is then reported as 
a separate transcript (Fig. 2).

Although genome-independent reconstruction is conceptu-
ally simple, there are two major complications: distinguishing 
sequencing errors from variation, and finding the optimal balance 
between sensitivity and graph complexity. Unlike the mapping-first 
strategy, sequencing errors introduce branch points in the graph 
that increase its complexity. To eliminate these artifacts, genome-
independent methods look at the coverage of different paths in the 
graph and apply a coverage cutoff to decide when to follow a path 
or when to remove it53,59. In practice, the choice of the k-mer length 
for this analysis can greatly affect the assembly53. Smaller values of k 
result in a larger number of overlapping nodes and a more complex 
graph, whereas larger values of k reduce the number of overlaps and 
results in a simpler graph structure. An optimal choice of k depends 
on coverage: when coverage is low, small values of k are preferable 
because they increase the number of overlapping reads contributing 
k-mers to the graph. But when coverage is large, small values of k 
are overly sensitive to sequencing errors and other artifacts, yield-
ing very complex graph structures59.

To cope with the variability in transcript abundance intrinsic 
to expression data, several methods, such as transABySS, use a 
variable k-mer strategy to gain power across expression levels to 
assemble transcripts53,55, albeit at the expense of CPU power and 
requiring parallel execution.
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Figure 3 | An overview of gene expression quantification with RNA-seq. 
(a) Illustration of transcripts of different lengths with different read 
coverage levels (left) as well as total read counts observed for each 
transcript (middle) and FPKM-normalized read counts (right). (b) Reads 
from alternatively spliced genes may be attributable to a single isoform 
or more than one isoform. Reads are color-coded when their isoform of 
origin is clear. Black reads indicate reads with uncertain origin. ‘Isoform 
expression methods’ estimate isoform abundances that best explain the 
observed read counts under a generative model. Samples near the original 
maximum likelihood estimate (dashed line) improve the robustness of the 
estimate and provide a confidence interval around each isoform’s abundance. 
(c) For a gene with two expressed isoforms, exons are colored according to 
the isoform of origin. Two simplified gene models used for quantification 
purposes, spliced transcripts from each model and their associated lengths, 
are shown to the right. The ‘exon union model’ (top) uses exons from all 
isoforms. The ‘exon intersection model’ (bottom) uses only exons common 
to all gene isoforms. (d) Comparison of true versus estimated FPKM values in 
simulated RNA-seq data. The x = y line in red is included as a reference.
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Figure from (Garber et al., 2011)

▶ When the same gene is compared between conditions, the read counts normalized by
sequencing depth (but not by gene length) are just fine
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Gene expression quantification

▶ The above formulation assumes that all reads can be assigned uniquely to a single gene

▶ That is not always true
▶ E.g. genes belonging to the same gene families have similar genome/RNA sequence, which

may cause mis-alignments
▶ Different genes can be located in the same genomic region but on opposite DNA strands

(strand specific RNA-seq resolves this issue)

▶ Unique alignment is typically not true for transcripts
▶ Different transcript isoforms can share a large fraction of their exons
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Contents

▶ Gene transcription and alternative splicing

▶ Alignment of RNA-seq data

▶ Gene expression quantification

▶ Transcriptome assembly
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Transcriptome assembly

▶ TopHat pipeline can identify exons and exon-exon junctions, but does not output the
full-length transcripts

▶ Goal: define precise map of all transcript variants / isoforms that are expressed in a
particular sample

▶ Challenges
▶ For short reads, hard to determine from which isoform they were produced, because isoforms

contain the same exons and exon-exon pairs
▶ Gene expression spans several orders of magnitude, with some genes represented by only few

reads (lowly expressed are more difficult)
▶ Majority of the sequencing reads typically originate from mature mRNA, but a (small)

fraction of the reads can originate from incompletely spliced precursor RNA (with introns
included)

▶ Two main classes of methods
▶ Genome-independent (de Brujin graph, see previous lecture)
▶ Genome-guided, i.e., using reads that are already aligned against a reference genome
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Paired-end sequencing reads

▶ Paired-end sequencing technology quantifies the nucleotide content of genomic DNA or
cDNA (for RNA) fragments from both ends of the fragments

Figure from https://emea.illumina.com/science/technology/next-generation-sequencing/plan-experiments/paired-end-vs-single-read.html
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Transcriptome reconstruction with Cufflinks

▶ Genome-guided: takes TopHat spliced alignments as input

▶ With paired-end RNA-seq data, Bowtie and TopHat align both reads separately but
aligned paired reads are treated together as a single alignment
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 
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Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms ( 1, 2, 3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.

Figure from (Trapnell et al., 2010)
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Transcriptome reconstruction with Cufflinks

▶ Connect fragments in an overlap graph

▶ Each fragment (read pair) corresponds
to a node

▶ Directed edge from node x to node y if

▶ The alignment for x starts at a
lower coordinate than y

▶ The alignments overlap in the
genome, and

▶ The fragments are“compatible”,
i.e., the fragments x and y can
come from the same transcript
isoform

▶ If two reads originate from different isoforms they
are likely incompatible
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 
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Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms ( 1, 2, 3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.

Figure from (Trapnell et al., 2010)
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Transcriptome reconstruction with Cufflinks

▶ From the overlap graph, construct
minimal set of transcript isoforms that
can explain all the fragments

▶ Minimum path cover problem

▶ Dilworth’s theorem: maximum number
of mutually incompatible fragments
equals minimum number of paths
covering the whole graph (=minimum
number of transcripts needed to explain
all the fragments)
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junction (Supplementary Table 1). Of the splice junctions spanned 
by fragment alignments, 70% were present in transcripts annotated 
by the UCSC, Ensembl or VEGA groups (known genes).

To recover the minimal set of transcripts supported by our frag-
ment alignments, we designed a comparative transcriptome assem-
bly algorithm. Expressed sequence tag (EST) assemblers such as 
PASA introduced the idea of collapsing alignments to transcripts 
on the basis of splicing compatibility17, and Dilworth’s theorem18 
has been used to assemble a parsimonious set of haplotypes from 
virus population sequencing reads19. Cufflinks extends these ideas, 
reducing the transcript assembly problem to finding a maximum 
matching in a weighted4 bipartite graph that represents com-
patibilities17 among fragments (Fig. 1a–c and Supplementary 
Methods, section 4). Noncoding RNAs20 and microRNAs21 have 
been reported to regulate cell differentiation and development, and 
coding genes are known to produce noncoding isoforms as a means 
of regulating protein levels through nonsense-mediated decay22. 
For these biologically motivated reasons, the assembler does not 
require that assembled transcripts contain an open reading frame 
(ORF). As Cufflinks does not make use of existing gene annotations 

during assembly, we validated the transcripts by first comparing 
individual time point assemblies to existing annotations.

We recovered a total of 13,692 known isoforms and 12,712 new iso-
forms of known genes. We estimate that 77% of the reads originated 
from previously known transcripts (Supplementary Table 2). Of the 
new isoforms, 7,395 (58%) contain novel splice junctions, with the 
remainder being novel combinations of known splicing outcomes; 
11,712 (92%) have an ORF, 8,752 of which end at an annotated stop 
codon. Although we sequenced deeply by current standards, 73% of 
the moderately abundant transcripts (15–30 expected fragments per 
kilobase of transcript per million fragments mapped, abbreviated 
FPKM; see below for further explanation) detected at the 60-h time 
point with three lanes of GAII transcriptome sequencing were fully 
recovered with just a single lane. Because distinguishing a full-length 
transcript from a partially assembled fragment is difficult, we con-
servatively excluded from further analyses the novel isoforms that 
were unique to a single time point. Out of the new isoforms, 3,724 
were present in multiple time points, and 581 were present at all 
time points; 6,518 (51%) of the new isoforms and 2,316 (62%) of 
the multiple time point novel isoforms were tiled by high-identity 
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Figure 1 Overview of Cufflinks. (a) The algorithm takes as input cDNA 
fragment sequences that have been aligned to the genome by software 
capable of producing spliced alignments, such as TopHat. (b–e) With 
paired-end RNA-Seq, Cufflinks treats each pair of fragment reads as 
a single alignment. The algorithm assembles overlapping ‘bundles’ of 
fragment alignments (b,c) separately, which reduces running time and 
memory use, because each bundle typically contains the fragments from 
no more than a few genes. Cufflinks then estimates the abundances of 
the assembled transcripts (d,e). The first step in fragment assembly is 
to identify pairs of ‘incompatible’ fragments that must have originated 
from distinct spliced mRNA isoforms (b). Fragments are connected in an 
‘overlap graph’ when they are compatible and their alignments overlap 
in the genome. Each fragment has one node in the graph, and an edge, 
directed from left to right along the genome, is placed between each 
pair of compatible fragments. In this example, the yellow, blue and red 
fragments must have originated from separate isoforms, but any other 
fragment could have come from the same transcript as one of these 
three. Isoforms are then assembled from the overlap graph (c). Paths 
through the graph correspond to sets of mutually compatible fragments 
that could be merged into complete isoforms. The overlap graph here can 
be minimally ‘covered’ by three paths (shaded in yellow, blue and red), 
each representing a different isoform. Dilworth’s Theorem states that 
the number of mutually incompatible reads is the same as the minimum 
number of transcripts needed to ‘explain’ all the fragments. Cufflinks 
implements a proof of Dilworth’s Theorem that produces a minimal set 
of paths that cover all the fragments in the overlap graph by finding the 
largest set of reads with the property that no two could have originated 
from the same isoform. Next, transcript abundance is estimated  
(d). Fragments are matched (denoted here using color) to the transcripts 
from which they could have originated. The violet fragment could have 
originated from the blue or red isoform. Gray fragments could have come 
from any of the three shown. Cufflinks estimates transcript abundances 
using a statistical model in which the probability of observing each 
fragment is a linear function of the abundances of the transcripts from 
which it could have originated. Because only the ends of each fragment 
are sequenced, the length of each may be unknown. Assigning a fragment 
to different isoforms often implies a different length for it. Cufflinks 
incorporates the distribution of fragment lengths to help assign fragments 
to isoforms. For example, the violet fragment would be much longer, and 
very improbable according to the Cufflinks model, if it were to come from 
the red isoform instead of the blue isoform. Last, the program numerically 
maximizes a function that assigns a likelihood to all possible sets of 
relative abundances of the yellow, red and blue isoforms ( 1, 2, 3)  
(e), producing the abundances that best explain the observed fragments, 
shown as a pie chart.

Figure from (Trapnell et al., 2010)
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