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Linear regression!

» Recall the multiple linear regression model

p
vi=Bo+ Y xuBk+ei=x/B+e,

k=1
where
> y; denotes the measured response for the ith sample/data point
> 3= (5,51,...,0,)" denotes the regression coefficients
> x; = (1,xi1,...,Xp)" denotes the predictors for the ith sample/data point, and

> ¢; denotes the Gaussian observation error for the ith measurement, ¢; ~ N(0, o?)

1See e.g. (Agresti, 2015) or (Murphy, 2012) or any book on (generalized) linear models



Linear regression: vector notation

» Assuming n measurements (x;,y;), i=1,...,n
Y1
y= : and X =
Yn

the linear regression model can be written as

y=XB+e,
where
€1
e=|
€n

and € ~ N (0,021,) and I, is the n-by-n identity matrix



Linear regression: likelihood

» Parameters of the linear regression model are § = (3, 0?)

» The likelihood for the linear regression model with Gaussian noise can be written as
LO [ X,y) = ply | X.0)
=N(y|mX)
=N(y| XB,0?)

=[N 1%/ 8,07
i=1

=TIV | i o),
i=1

where g = (p1, ..., pn) ", pi = E[y;] = x/ B, and £ denotes the expectation and
covariance of random variable y;, and o2 specifies uncertainty around the expected value



Parameter estimation for linear model with Gaussian noise

» The maximum likelihood estimate (MLE): choose parameters such that they maximize the
likelihood L of the observed data (i.e., optimize w.r.t. model parameters)

b= argmeaxL(G | X,y) = argmeaxp(y | X,0)



Parameter estimation for linear model with Gaussian noise

» The maximum likelihood estimate (MLE): choose parameters such that they maximize the
likelihood L of the observed data (i.e., optimize w.r.t. model parameters)

~

0= argmeaxL(G | X,y) = argmgaxp(y | X,0)

» Because logarithm is a strictly increasing function, it is equivalent to maximize the
(natural) logarithm of the likelihood

«0) = logply| X,0) =log ] | plyilxi.0) = 3 log p(yilxi. 0)

i=1
> g | (5
p J 2102

3 1
) exp (—M(yf—x,-Tﬁ)zﬂ
= fflog (270?) ~ % 22

> Instead of maximizing ¢(#) one can minimize —¢(6)



Parameter estimation for linear model with Gaussian noise

» Maximum (or minimum) values of a (log) likelihood function w.r.t. parameters are
obtained at parameter values where the gradient of the function w.r.t. parameters, i.e.
partial derivatives, are zero

» For some models, the minimum / maximum can be obtained in a closed form

» The linear regression model with additive Gaussian noise is one such model:

= (XTX)"'xTy
&2=%<y—9)T(y—9)
=1y~ XB)(y ~ XP).

assuming X has full rank so that the inverse (X7 X)™! exists



An illustration of the linear regression model with Gaussian noise

» An example of regression model fitting with model y = Gy + x01 + €

Sum of squares error contours for linear regression
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Figure: Figure from (Murphy, 2012)



Nonlinearities in the linear regression model

» To model non-linear function we can replace x with some non-linear function ¢(x)

» So-called basis function expansion
» Model is still linear in parameters, thus called as linear regression

» For example, polynomial basis functions
A 2 d\T
X:¢(X):(13X7X7~'-3X)

» The above theory works for general basis functions as well



An illustration of the linear regression model with Gaussian noise

» Examples of regression model fitting with linear and non-linear basis

> o(x) = (1,x1,%)"
> (b(x) = (1,X17X27X12,X22)T

Figure: Figures from (Murphy, 2012)



Evaluation on linear regression models

» We are often interested in
» Evaluating the model accuracy
> Testing the significance of covariates/predictors of the model, either simultaneously or
individually
» A natural measure of how well a model fits the data y is the so-called residual sum of
squares

RSS=(y—9)"(y—9)

I
=<

I
X

"~
@
e

» RSS quantifies the amount of signal in y that a linear model cannot explain



Comparing two nested linear regression models

» Assume two nested multiple linear regression models
> Model 1: y; = o + > 7~ xSk + €i (so-called reduced or null model with p; 4+ 1 parameters)
> Model 2: y; = Bo+ > 1L, xuBr + iL:Til xik Bk + €i (so-called full or alternative model with
p1 + p2 + 1 parameters)



Comparing two nested linear regression models

» Assume two nested multiple linear regression models
> Model 1: y; = Bo + > 71, xu Bk + € (so called reduced or null model with p; 4+ 1 parameters)
> Model 2: yi = o+ > PL, xSk + D12 o1 Xik Bk + €i (so-called full or alternative model with
p1 + p2 + 1 parameters)
» Example: compare regression models with one or two explanatory variables (first and
second-order polynomials)
> Model 1: y; = B0 + xi1 51 + €
> Model 2: y; = Bo + xi1f1 + X202 + €
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Comparing two nested linear regression models: F statistic

> A test statistic that compares the RSS values between two models

RSS; — RSS,)/dfy

(
F =
RSS,/df,

where so-called degrees of freedom are

> dfi=(1+pr+p)—(14+p)=p
> df2:n—1—p1—p2



Comparing two nested linear regression models: F statistic
> A test statistic that compares the RSS values between two models

(RSS; — RSS;)/dfy

F =
RSS,/df,

where so-called degrees of freedom are
> dfi = (1+p1+p)—(1+p1)=p2
> df2:n—1—p1—p2

» Null hypothesis: the p, additional covariates included in model 2 do not provide
significantly better fit

» In other words, Ho : Bpj4+1 = ... = Bpj4p =0

> Null distribution: the F test statistic has F distribution with (df, df,) degrees of freedom

— Significance value from null hypothesis significance testing



Likelihood ratio test

> Let L(A; | X,y) and L(A, | X,y) denote the maximum likelihoods for the two nested linear
models, respectively

» The likelihood ratio measures how many times less likely the data is under the reduced
model (null hypothesis) than the full model (alternative hypothesis)

M) =16 x,y)

» Intuition:
> Values of A(y) close to 1 indicate no difference between the null and alternative models
» Values close to 0 indicate that the alternative model can explain the data much better



Likelihood ratio test

> Let L(A; | X,y) and L(A, | X,y) denote the maximum likelihoods for the two nested linear
models, respectively

» The likelihood ratio measures how many times less likely the data is under the reduced
model (null hypothesis) than the full model (alternative hypothesis)

M) =16 x,y)

> Intuition:
> Values of A(y) close to 1 indicate no difference between the null and alternative models
» Values close to 0 indicate that the alternative model can explain the data much better
» An asymptotic result for nested models:

» When n — oo, the test statistic —2 log A(y) is chi-squared distributed with degrees of
freedom equal to df = |62| — |A1], i.e. the difference in the number of free parameters
between the two models

» This is a lot more general test than the F-test in that observation likelihoods do not need
to Gaussians or the underlying model does not need to be linear



The likelihood ratio test for the linear Gaussian model

» For the two nested linear regression models with Gaussian noise, the likelihood ratio test
can be written as

maxg, L(61 | X,y)
maxg, L(62 | X,y)
L(0y | X.y)
L(éz | X,y)

_ (4, RSS1—RSS;\ ™2
T RSS,

p —n/2
:<1+2F>
n—1—pi—p

A(y) = —2log
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Generalized linear models

» In the standard linear regression models the response variable is assumed to have the
Gaussian distribution
> Generalized linear models (GLM) are a generalization of linear regression models where the
response variables can have an error distribution other than the normal distribution
» In commonly used GLMs the response variable is assumed to have a distribution in the
exponential family, including e.g.
» Normal, exponential, beta, gamma, Bernoulli, Poisson, etc. distributions



Generalized linear models: link function

> Recall that in the case of Gaussian likelihood, E[y;] = p; = x/ 8
» In GLMs, the mean of the random variable y;, E[y;] = p;, is assumed to depend on a linear
model via an invertible link function g

g(ui) =x/ B



Generalized linear models: link function

» Recall that in the case of Gaussian likelihood, E[y;] = p; = x/ B

i
» In GLMs, the mean of the random variable y;, E[y;] = p;, is assumed to depend on a linear
model via an invertible link function g

g(ui) =x/ B

» Because g is invertible

Elyi]l = pi = g ' (x/ B)
» Free to choose g(+) as long as it is invertible and g~1(-) has appropriate range
> Note: in the Gaussian linear model, the link function g(-) is the identify function



Generalized linear models

» GLM is obtained by using linear model together with the link function to parameterize an
exponential distribution

» For example, GLM model for binary-valued data y € {0, 1} that has the Bernoulli
distribution would be

1, with probability g=(x"3)

ply | x.8) = Bernauli(y | g (" 8)) = {O with probability 1 g (x75)

where g~1(-) maps the real line to an interval [0, 1]



Generalized linear models

» GLM is obtained by using linear model together with the link function to parameterize an
exponential distribution

» For example, GLM model for binary-valued data y € {0, 1} that has the Bernoulli
distribution would be

1, with probability g=(x"3)

p(y | x,) = Bemoul(y | g (x"3)) = {O with probability 1 g (x75)

where g~1(-) maps the real line to an interval [0, 1]
» For example, GLM model for continuous-valued data y € R that has the Gaussian
distribution would be

ply [%,8,0%) =N(y | g1 (x"B8).0?) = N(y | x"B,0%)



Generalized linear models

>

>

GLM is obtained by using linear model together with the link function to parameterize an
exponential distribution

For example, GLM model for binary-valued data y € {0,1} that has the Bernoulli
distribution would be

1, with probability g=(x"3)

ply | x.8) = Bernauli(y | g (" 8)) = {O with probability 1 g (x75)

where g~1(-) maps the real line to an interval [0, 1]
For example, GLM model for continuous-valued data y € R that has the Gaussian
distribution would be

ply [%,8,0%) =N(y | g1 (x"B8).0?) = N(y | x"B,0%)

Variance of a GLM can follow the variance of the exponential family distribution or may be
defined as a function V/(-) of the predicted value
For example, for the Gaussian linear model

Var(y;) = 0® or V(ui,¢) = V(g "(x/B),9)



Generalized linear models: Poisson example

» Poisson distribution is a probability distribution » An example of the Poisson
for discrete-valued random variable that can distribution with A =20/6
take values 0,1,2,. ..

» The probability mass function for a Poisson 0.25 lambda = 20/6
distributed random variable y is o2

) A exp(—A -
ply | ) = Poisson(y | 3) = 224
v T o4
where X\ > 0 is a positive rate parameter 0.05

> The mean and variance of a Poisson . TQ%

distribution are 0 5 10 15

k
Ely] =X and Var(y)=A

20



Generalized linear models: Poisson example

» GLM for Poisson distributed response variables Y = (Y1,..., Y,)", i.e., non-negative
count data where each Y; € {0,1,2,...}
» Poisson rate parameter(s) A = (\y,..., ;)" must be positive, so logarithmic link function

is appropriate
log\i =x/B & X =exp(x/B)

and therefore
Elyi] = Ai = exp(x;3)

» The variance is defined directly by the Poisson distribution, i.e., Var(Y;) = \; = exp(x;3)



Generalized linear models: Poisson example

>

>

GLM for Poisson distributed response variables Y = (Y1,...,Y;,)7, i.e., non-negative
count data where each Y; € {0,1,2,...}
Poisson rate parameter(s) A = (\y,...,\,)" must be positive, so logarithmic link function

is appropriate
log\i =x/B & X =exp(x/B)

and therefore

Elyi] = Ai = exp(xiB3)
The variance is defined directly by the Poisson distribution, i.e., Var(Y;) = A\; = exp(x;3)
Likelihood of Poisson GLM model for the observed data'y = (y1,...,y,)" is then

X exp(—\;) _ f[ exp(x;3)" exp(— exp(x;3))
y,'! i1 _)/i!

L(B | X,y) = [ [ Poisson(y; | A1) = ]|

i=1 i=1



Fitting generalized linear models

» GLMs are typically estimated using maximum likelihood (or Bayesian) approach
» Maximum likelihood estimate:

A

B= argmﬁaxL(ﬂ | X,y)

» Note that for GLMs no closed form solutions exist, so numerical methods must be used
» Gradient-based optimization methods



Hypothesis testing with GLMs
» For GLMs the null hypothesis is often stated by restricting the parameter vector
Hy: Be€©,cRPH
» Consequently, the alternative hypothesis is defined via the complement of Oy, i.e.,

of = RP1\ 8,
H; : ﬂ/ S eOC



Hypothesis testing with GLMs
» For GLMs the null hypothesis is often stated by restricting the parameter vector
Hy : ﬁe@()CRp-H

» Consequently, the alternative hypothesis is defined via the complement of Oy, i.e.,
0§ = RP1\ 9
H; : ﬂ/ S eOC
» For example, if one is interested in testing a single predictor x;, then

> Hoy: Bi =0, or effectively 8 € R?
> Hy: i #0, or effectively B’ € RPH!



Hypothesis testing with GLMs
» For GLMs the null hypothesis is often stated by restricting the parameter vector
Hy : ﬁe@()CRP-H

» Consequently, the alternative hypothesis is defined via the complement of Oy, i.e.,
0§ = RP1\ 9
H; : ﬂ/ S eOC
» For example, if one is interested in testing a single predictor x;, then
> Hoy: Bi =0, or effectively 8 € R?
> Hy: i #0, or effectively B’ € RPH!
» Hypothesis testing can be implemented using e.g. the likelihood ratio test

» An asymptotic result for nested models: when n — oo, the test statistic
maxg, L(B,|X.y)
maxg, L(B,|X.y)

difference in dimensionality of @ and ©§

—2log is chi-squared distributed with degrees of freedom equal to the
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Differential gene expression analysis
On the next slides we motivate the use of a negative binomial distribution by the following
reasoning:
» Multinomial sampling across all genes. ..
» .. .leads to binomial sampling for a single gene. ..
> ...leads to Poisson approximation for a single gene. ..
> ...leads to negative binomial model to account for larger variance



Multinomial distribution

Consider the following:

> A dice that has N different outcomes

» Each on the N outcomes is chosen
randomly with probability p;, where

N

Z,’:1 pi=1

» When a dice is rolled once, one of the
outcomes will be chosen randomly

» Assume an experiment where the dice
is rolled n times (i.i.d.)

» Denote the number of times each
outcome is observed by
X = (Xl,...7XN)

» This corresponds to multinomial
sampling distribution



Multinomial distribution

Consider the following: > Denote the N probabilities by p = (p, . - ., pn)
> A dice that has N different outcomes » The probability mass function of the random
» Each on the N outcomes is chosen variable X = (Xi,..., Xy) that has the

randomly with probability p;, where multinomial distribution with p and n:

N
Y pi=1

» When a dice is rolled once, one of the Multinomial(x; n, p)

outcomes will be chosen randomly =P(Xi=x1,...,Xn = xn)
> Assume an .experirn.ent where the dice _ ﬁpflpgz P X xy =0
is rolled n times (i.i.d.) 0, otherwise

» Denote the number of times each
outcome is observed by
X = (Xl,...7XN)

» This corresponds to multinomial
sampling distribution



Multinomial sampling distribution for RNA-seq
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Multinomial sampling distribution for RNA-seq

» N different outcomes for a dice correspond to genes: e.g. in human N ~ 20,000

» Probability p; corresponds to the proportion of RNA fragments from gene i (note the
effect of length of gene /)

» “One roll of a dice" corresponds to measuring a single RNA fragment for one specific gene
from a very large pool of RNA fragments

» A sequencing run can produce e.g. 10M-1B sequencing reads, i.e., for example n = 10°

> At the end of the RNA-seq experiment, pre-processing and alignment, x = (x1, ..., xn)

denotes the number of reads mapped to each gene, where x; + ...+ xy = n (assuming all
n sequences can be aligned uniquely)

— For a single sample, we can assume that read counts for genes (or transcripts) have a
multinomial (sampling) distribution



Multinomial sampling distribution for RNA-seq

>
>

>

>

N different outcomes for a dice correspond to genes: e.g. in human N ~ 20, 000
Probability p; corresponds to the proportion of RNA fragments from gene i (note the
effect of length of gene /)

“One roll of a dice” corresponds to measuring a single RNA fragment for one specific gene
from a very large pool of RNA fragments

A sequencing run can produce e.g. 10M-1B sequencing reads, i.e., for example n = 10°

At the end of the RNA-seq experiment, pre-processing and alignment, x = (x1, ..., xn)
denotes the number of reads mapped to each gene, where x; + ...+ xy = n (assuming all
n sequences can be aligned uniquely)

For a single sample, we can assume that read counts for genes (or transcripts) have a
multinomial (sampling) distribution

However, the use of multinomial is somewhat challenging because we would need to model

all genes at the same time



Binomial distribution

» Consider a binary-valued random variable that takes value 1 with probability p and value 0
with probability 1 — p

» For example, the probability that we obtain a sequencing read from gene i is p = p;, and
the probability that we obtain a sequencing read from any other geneis 1 — p = Z#,- pj



Binomial distribution

» Consider a binary-valued random variable that takes value 1 with probability p and value 0
with probability 1 — p

» For example, the probability that we obtain a sequencing read from gene i is p = p;, and
the probability that we obtain a sequencing read from any other geneis 1 — p = Z#,- pj

» Take n independent random realizations of the binary-valued random variable

v

Let X denote the number of success in n realizations

» The probability of getting exactly X = k successes in n trials is given by probability mass
function of the binomial distribution

B(k;n,p) = P(X = k) = (:) pk(l _ p)n—k



Binomial distribution

>

v

Consider a binary-valued random variable that takes value 1 with probability p and value 0
with probability 1 — p

For example, the probability that we obtain a sequencing read from gene i is p = p;, and
the probability that we obtain a sequencing read from any other geneis 1 — p = Z#,- pj
Take n independent random realizations of the binary-valued random variable

Let X denote the number of success in n realizations

The probability of getting exactly X = k successes in n trials is given by probability mass
function of the binomial distribution

B(k;n,p) = P(X = k) = (:) pk(l _ p)n—k

Each of the components of a multinomial distribution separately (e.g. a gene) has a
binomial distribution



Multinomial vs. binomial distribution for RNA-seq
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Binomial distribution

=20, p=1/
0.25 n=20 VP 6

0 T?Qn
5 10

k

15



Poisson distribution

» Consider a discrete random variable X that can have values 0,1,2,... up to n, where n is
very large (practically infinite)
» The discrete random variable X has a Poisson distribution with rate parameter A > 0 if

Aeexp(—2)

Poisson(k; \) = P(X = k) = i



Poisson distribution

» Consider a discrete random variable X that can have values 0,1,2,... up to n, where n is
very large (practically infinite)
» The discrete random variable X has a Poisson distribution with rate parameter A > 0 if

Aeexp(—2)

Poisson(k; \) = P(X = k) = i

» For large number of trials n and with a small probability p (of fixed value of n- p),
binomial distribution B(X; n, p) can be approximated by Poisson distribution
Poisson(X; A\) where A\=n-p

n=20, p=1/6; lambda = 20/6

,"/\
0.2 A
| \

Binomial pdf
Poisson pdf




Poisson approximation for Binomial distribution

> We have (p = 2)

lim B(X = k; n,p)

n— o0
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Poisson distribution

» For RNA-seq data

» The number of sequencing reads (n) in an experiment is large
» The relative abundance (p) of a single gene among all e.g. 20,000 human genes is small

» So Poisson model for sequencing read counts for a single gene in a single experiment is a
reasonable approximation



Negative binomial distribution

» Read counts across biological replicates is observed to have a larger variance than what
Poisson model suggests

» So-called overdispersed noise
» Biological variability/noise

» Negative binomial has been found to provide a good fit to sequencing count data


https://en.wikipedia.org/wiki/Negative_binomial_distribution

Negative binomial distribution

» Read counts across biological replicates is observed to have a larger variance than what
Poisson model suggests
» So-called overdispersed noise
» Biological variability/noise
» Negative binomial has been found to provide a good fit to sequencing count data
» The negative binomial distribution is a discrete probability distribution for the following
counting process:

> Start a sequence of i.i.d. Bernoulli trials (with probability p)
» Count the number of successes (denoted X) in your sequence until a specified (non-random)
number of failures (denoted r) occurs


https://en.wikipedia.org/wiki/Negative_binomial_distribution

Negative binomial distribution

» Read counts across biological replicates is observed to have a larger variance than what
Poisson model suggests

» So-called overdispersed noise
> Biological variability/noise
» Negative binomial has been found to provide a good fit to sequencing count data
» The negative binomial distribution is a discrete probability distribution for the following
counting process:

> Start a sequence of i.i.d. Bernoulli trials (with probability p)
» Count the number of successes (denoted X) in your sequence until a specified (non-random)
number of failures (denoted r) occurs

» Random variable X has the negative binomial distribution with probability mass function

NB(k; r, p) = P(X = k) = (r + i_ 1) P (1 - p)’

» The negative binomial distribution has several alternative formulations: see e.g.
https://en.wikipedia.org/wiki/Negative_binomial_distribution

» Be careful, especially when using in different programming languages!


https://en.wikipedia.org/wiki/Negative_binomial_distribution

Negative binomial distribution

=1, p=1/6 =5, p=1/6 =10, p=1/6 =50, p=1/6
1 =1, p=1/ 05 =5, p=1/ 03 =10, p=1/ 0.12 =50, p=1/
08 04 0.25 0.1
02 0.08
=06 =03 = =
U o Joo.1s J 0.06
& 0.4 & 02 & &
0.1 0.04
02 01 0.05 T 0.02 T TT
oL oLLTe S Te of 196
0 5 10 15 20 0 5 10 15 20 5 10 15 20 5 10 15 2
k k k K



Negative binomial distribution

r=1, p=1/6 =5, p=1/6 =10, p=1/6 =50, p=1/6
1 Pl 05 5. p=1/ 03 p=1/ 0.12 50, p=1/
08 04 0.25 0.1
02 0.08
Zo06 =03 = =
- Y L o015 M 0.08
& 04 & 02 & &
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oL oLLTe S Te oot 196
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» Negative binomial distribution occurs in many contexts

» Negative binomial distribution can also be derived as a continuous mixture of Poisson
distributions where the mixing distribution is a gamma distribution

NB(k; r,p) = / Poisson(k; A)Gamma (/\; " 1;”) o
0



Gamma-Poisson compound distributions

f(k; "'ap) = ‘/(; fPoisson(/\) (k) : fGamma(r, 1’;1’) (A) dA

B R N
o H (Z)Te
_ Q-p)p" / °° AL g=Mp g\
k! F(T) 0
(1 - p)Tp—r +k
Hre) P TR
_Plr+k) ,
= 1-p)r.
HT(0) p"(1-p)

Copy-pasted from wikipedia: https://en.wikipedia.org/wiki/Negative_binomial_distribution


https://en.wikipedia.org/wiki/Negative_binomial_distribution

Compound distributions

» Assume a random variable X with a cumulative distribution F¢ (and density pr) with
parameters 6

» Assume that the parameters ¢ of F¢ are not fixed but have a mixing distribution F,
(density pg)
» Distribution F¢ is compounded by F,

p() = [ pr(xlo)ps(0)ds

» Recall the definition of the joint and marginal distributions

p(x,y) = p(xly)p(y) and p(x) = / p(x, y)dy = / p(x]y)p(y)dy



Compound distributions

Typical usage:
» Overdispersion modeling

> Need to model a greater amount of variability than what would be expected by a given
baseline model

> Bayesian inference
> Predictive distribution of future data p(y*|6) given the posterior distribution of model

parameters @ conditioned on observed data y, p(y*|y) = [ p(y*|0)p(6]y)dd
Commonly used compound distributions in bioinformatics
» Gamma-Poisson, i.e., negative binomial
> Beta-binomial

» Dirichlet-multinomial



Negative binomial distribution: reparametrizations

» The mean and variance of negative binomially distributed random variable are

pr
(1-p)

E[X] =y = l'i’p and V[X] =o% =



Negative binomial distribution: reparametrizations

» The mean and variance of negative binomially distributed random variable are
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» For our application it is useful to reparameterized NB using the mean and variance

pr
EX]=n=1—

NB(u,0?) £ NB(r, p),

where

and p:a



Negative binomial distribution: reparametrizations

» The mean and variance of negative binomially distributed random variable are

pr ) pr
and V[X]=0?=
—-p X (1-p)?

» For our application it is useful to reparameterized NB using the mean and variance

EX]=n=1

NB(u,0?) £ NB(r, p),

where ) )
o

and p= e

o2

W
2 _

r =

g

» Further, we will consider a parameterization using the mean p and dispersion ¢
NB(u, ¢) £ NB(u, 0°),

where ¢ defines the variance as 02 = i + ¢u?
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Differential gene expression analysis

» We will look at edgeR (McCarthy et al., 2012), a versatile and efficient modeling method
for sequencing count data

» edgeR model assumes that the number of aligned reads in sample j that are assigned to
gene g can be modelled by negative binomial distribution (note: mean-dispersion
reparametrization)

Ngj ~ NB(sjAgj, bg);
where

> s; is the so-called library size: e.g. the total number of sequencing reads from sample j (or
some other normalization quantity)
> )\g is the proportion of RNA fragments that originate from gene g in sample j
> Note that 3°, A\gj =1
» ¢, is the dispersion for gene g that defines the over-dispersion and thus the variance in the
negative binomial model



Differential gene expression analysis

» For the our reparameterized definition of NB distribution the mean and variance for N,; are

E[Ng] = ig =)y (1)
VINg] = g+ Ggtili = Sihgj + dgS2AZ (2)

» Recall that for the standard Poisson model E[Ngj] = f14j and V[Ngj] = pug;



Differential gene expression analysis

» Often one is interested in comparing two populations A and B, i.e., Hy : Aga = A8

> edgeR implements a generalized linear model (GLM) with NB distribution that allows
comparison of two population means as well as many other more complex experimental
designs

» In GLM the mean iz = sj)g; of the NB is modeled with a log-linear model

log\g; = Xx; 0,
log pgj = ijﬁg + log s;
P
logpgg = Bo+ Z Xjk Bk + log s,

k=1

> x; is a vector that contains all p covariates for sample j, and
> (3, is a vector that contains the corresponding parameters for gene g

» The mean of the NB distribution is g = exp(ij,Bg + log s;)
> Recall that variance is defined as jig; + d)/;;-



Differential gene expression analysis

» Consider a simple example with 4 samples:
> 2 from group A and 2 from group B
» The 4 samples have “age” covariate values 0.5, 1, 1.5 and 2
» The GLM model and the design matrix X for the null hypothesis model (Mp) that
assumes there is no difference between A and B

log fig1 1 05 log s1
|Og Hg2 _ 1 15 < ﬁgO > + |0g )
log /13 11 Be1 logss |’
log jtga 1 2 log s4



Differential gene expression analysis

» Consider a simple example with 4 samples:
> 2 from group A and 2 from group B
» The 4 samples have “age” covariate values 0.5, 1, 1.5 and 2
» The GLM model and the design matrix X for the null hypothesis model (Mp) that
assumes there is no difference between A and B

log fig1 1 05 log s1
|Og Hg2 _ 1 15 < ﬁgO > + |0g )
log /13 11 Be1 logss |’
log jtga 1 2 log s4

» The model for the alternative hypothesis with two conditions (M;) can be written e.g.

log fig1 1 05 0 log s1
logpg | | 1 15 0 Bgo log s,
logpgs | | 1 1 1 Pa1 logss |’
log piga 1 2 1 Pe2 log s4

where samples 1 and 2 are from condition A and samples 3 and 4 are from condition B



Differential gene expression analysis

» Continuing the example from the previous page, lets denote the 4 observed read counts for
gene g as yg = (Ng1,...,Nga) "

» In edgeR, statistical hypothesis testing for differential gene expression between conditions
A and B can be implemented e.g. with the likelihood-ratio test

E(BgOa Bgla ég‘yga MO)

T=-2In—F——7—"-"=52
Z(BgOa Bgla Bg2a ¢g|Yg7 Ml)

> {(-) is the NB density function
> f,i denotes the maximum likelihood estimate of (4 given y; and Mo (or y; and M)
> Similarly, ¢, denotes the maximum likelihood estimate (or another estimate, see next slides)
of dispersion ¢
» The test statistic T is approximately chi-squared distributed with degrees of freedom equal
to dfpy, — dfpy,, where dfy, denotes the number of free parameters of model M

— p-value
» Remember multiple testing



Differential gene expression analysis

» In some applications the number of biological replicates is too small to allow accurate
estimation of both 3, and ¢,

> edgeR tool implements a moderated test where information between genes is shared that
allows more accurate dispersion estimation

» The so-called adjusted profile likelihood (APL) for dispersion ¢, is

~ 1
APLg(¢g) = e(¢g|¥ga ﬂg) 3 log det Z

> g is free parameter
» (g is the ML estimate of 3, that depends on ¢,
» T, is the Fisher information matrix



Differential gene expression analysis

» One possible assumption is that all genes have the same dispersion value ¢, = ¢

» A shared dispersion can be estimated by maximizing the sum of the adjusted profile
likelihoods

APLs(¢) = ZAPL

» In essence, data across all genes is shared to estimate variance/dispersion
» edgeR tool provides also options for other dispersion estimates

» Trended: group genes into bin that have similar mean read count
> Gene-wise



Differential gene expression analysis

» An example from edgeR User Guide (Chen et al, 2017)
» Three patient with oral squamous cell carcinomas

» Oral squamous cell carcinomas and matched normal tissue from each patient
> RNA-seq experiments paired experimental design

v

Goal: detect genes differentially expressed between tumour and normal tissue
» Samples: 8N, 8T, 33N, 33T, 51N, 51T
Design matrix X is

v

(Intercept) Patient33 Patient51 TissueT

8N 1 0 0 0
8T 1 0 0 1
33N 1 1 0 0
33T 1 1 0 1
51N 1 0 1 0
51T 1 0 1 1

Figure from (Chen et al, 2017)



Differential gene expression analysis

» Variance dependence on the mean (biological coefficient of variation equals the square
root of the dispersion)

Tagwise
—— Common
—— Trend

1.0

Biological coefficient of variation

Average log CPM

Figure from (Chen et al, 2017)



Differential gene expression analysis

> 1269 genes differentially expressed with FDR 5%
> Additionally, require at least 2-fold change (blue horizontal lines below)

> MA plot: a scatter plot where a dot corresponds to a gene g, x-axis shows mean gene
expression % log XgaXgp and y-axis shows difference log ;—g’;
8l

. M * non-DE
. o Up
* Down

log-fold-change

2 4 6 8 10 12 14

Average log CPM

Figure from (Chen et al, 2017)
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Transcript-level expression quantification
P Let us assume that each gene i is associated with J; transcripts indexed by j, then

0 = P(sample a read from transcript j associated with gene i)

1

where

» 1 is the expression level of transcript j associated with gene j
» ¢ is the length of transcript j of gene i
» Normalizing constant is Z = ZU wiilij

» The true expression level of gene i is

Ji
Hi = Z Hij
j=1



Transcript-level expression quantification

> Lets denote the aligned RNA-seq reads as Ry, R, ..., Ry (note that N now denotes the
same thing as n previously)

P Let us also make an unrealistic assumption that all reads are assigned uniquely to one of
the transcripts

» Then the frequency estimator gives us

~ kg
0=,
where kj; is the number of reads assigned uniquely to transcript j of gene /
» Correspondingly, we can convert the estimates into expression values by normalizing by the
transcript length

~

0 ki Ji ki
N 0y o_ ij P AL if
Hi > g = N and - fij = JZZl fij o Zj ;N




Transcript-level expression quantification

» Recall the union method for estimating the gene expression level

and the frequency estimator

ki=_ ki
J

where /; is the length of the gene i (sum of lengths of all exons)

» Union method tends to underestimate the gene expression level because

where £; > £

d.

1

IN

> ki _@+..'+ ki,
0 l;

ki1 ki,

Oy ot by’

i



Transcript-level expression quantification

» Consider a simple case of skipped exon

- Intron
1 Skipped exon
mm— Constitutive exons

Inclusion reads
L ——

=]
Constitutive ™m= Constitutive
reads ——'  reads
Exclusion
reads

Figure from (Katz et al., 2010)

> We can use e.g. the reads in the skipped exon and the inclusion and exclusion reads
together with the frequency estimator to estimate the relative expression of the two
transcripts



Transcript-level expression quantification
» With paired end reads we can try to use all (non-uniquely) aligned reads assuming we can

estimate insert length variability
C Insert variability:
= = o =dVir
-_— ==l
== = ‘
—-— —
- ==
L E =
- = = Insert length (nt)
— =

'

Paired-end estimate, ¥y, 5o

Figure from (Katz et al., 2010)

» Estimation can be done Markov chain Monte Carlo (MCMC) sampling (Katz et al., 2010)
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