Aalto university

Björn Ivarsson

Exercise sheet 7

Complex Analysis, MS-C1300.
Hand in exercise 1 and 2 in separate files for grading. Deadline Monday 13.11 at 23:59. The exercises should be uploaded to the correct folder on MyCourses as pdf-files with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Tuesday 14.11 or Wednesday 15.11.
(1) By means of the local Cauchy Theorem (Cauchy's Theorem in a disk), assuming that the circles are positively oriented, calculate:
(a)

$$
\begin{equation*}
\int_{|z|=1} \sqrt{9-z^{2}} d z \tag{3p}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{|z|=1} \frac{1}{z^{2}+2 z} d z \tag{3p}
\end{equation*}
$$

(2) Let $\gamma(t)=2 \cos t+i \sin t$ for $0 \leq t \leq 2 \pi$. Evaluate:
(a)

$$
\begin{equation*}
\int_{\gamma} \frac{1}{z} d z \tag{3p}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{\gamma} \frac{1}{z^{2}+2 i z} d z \tag{3p}
\end{equation*}
$$

(Hint: Winding numbers and partial fractions help here.)
(3) Calculate

$$
\int_{|z+i|=3 / 2} \frac{1}{z^{4}+z^{2}} d z
$$

where the trajectory $|z+i|=3 / 2$ is positively oriented.
(4) Let γ and β be closed, piecewise smooth paths in \mathbb{C} with the same initial point. Show that $n(-\gamma, z)=-n(\gamma, z)$ for every

$$
\begin{aligned}
& z \in \mathbb{C} \backslash|\gamma| \text { and that } n(\gamma+\beta, z)=n(\gamma, z)+n(\beta, z) \text { for every } \\
& z \in \mathbb{C} \backslash(|\gamma| \cup|\beta|) .
\end{aligned}
$$

