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DNA methylation: what?

» Epigenetic changes are reversible modifications on DNA, or “on top of DNA", which do not

change the DNA sequence itself

» DNA methylation is an epigenetic modification where methyl group is added to the 5
position of a cytosine in DNA

» Methyl group is added enzymatically by DNA methyl transferases (DNMT)
» By far the most extensively studied epigenetic modification on DNA
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DNA methylation: where?
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Figure from (Schubeler, 2009)



DNA methylation: how?

» Two general classes of enzymatic methylation activities

> De novo methylation (mainly) by DNMT3
> Maintenance methylation during cell division (mainly) by DNMT1
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DNA methylation in gene regulation

» CpG islands (C+G dense =500 long regions) are present in the 5' regulatory regions of
many genes (5" = “beginning”)
» Hypermethylation (=overmethylation) of CpG islands near gene promoters contributes to
transcriptional silencing by
> Affecting binding of transcription factors (DNA binding protein that regulate gene
transcription)

» Binding proteins with methyl-CpG-binding domains (MBDs), and recruiting e.g. histone
deacetylases and other chromatin remodellers
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DNA methylation in gene regulation




DNA methylation in health and disease

» DNA methylation is necessary for normal development, e.g. in

» Cell differentiation

> Protection of DNA from transposable elements
» Genomic imprinting

» X chromosome inactivation

» Environmental and lifestyle factors may impact DNA methylation, even in-utero

» DNA methylation patterns have been associated with several diseases



Heritability of DNA methylation patterns

» DNA methylation patterns are not directly inheritable
» Paternal and maternal DNA methylation patterns are almost completely erased during first
cell divisions after fertilization in mammals (epigenetic reprogramming)
» However, genomic variants can influence DNA methylation
> So-called methylation quantitative trait loci (mQTL) effects
» DNA methylation patterns correlate between family members to some extent

» For example in genome-wide human leukocyte DNA methylation profiles, correlation
coefficients between 0.24 and 0.30 have been reported between first-degree relatives,
compared to 0.03 between unrelated individuals (Tremblay et al. 2016)

» These seem to be explained by both genetic inheritance and environmental factors



DNA demethylation

» Until recently, it was believed that methylated DNA can be unmethylated only by dilution
during cell differentiation/DNA replication, i.e., incomplete DNA maintenance methylation

» Recently, TET family proteins were shown to be dioxygenases that converted 5mC to
5hmC, 5fC and 5caC, which can be further converted back to unmethylated C

» TETs thus contribute to active demethylation, but 5hmC, 5fC and 5caC can also have
multiple functions



DNA demethylation
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Bisulfite sequencing (BS-seq) protocol

» Bisulfite treatment of genomic DNA converts unmethylated cytosines to uracils which are
read as thymine during sequencing

» Methylated (and hydroxymethylated) cytosines are resistant to the conversion and are read

as cytosine
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Figure from (Krueger et al, 2012)



Bisulfite sequencing (BS-seq) protocol

» Bisulfite treatment of genomic DNA converts unmethylated cytosines to uracils which are
read as thymine during sequencing
» Methylated (and hydroxymethylated) cytosines are resistant to the conversion and are read

as cytosine
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Figure from (Booth et al, 2012)




Reduced representation BS-seq (RRBS-seq)

A @-Genomic DNA

» BS-seq provides an accurate map of
methylation state at single nucleotide resolution

» Whole genome analysis is expensive since only
about 1% of the human genome contains CpGs

» Reduced representation BS-seq (RRBS-seq)
uses restriction enzymes prior to bisulfite
sequencing focus on CpG regions

» Mspl digests genomic DNA in a
methylation-insensitive manner

> Mspl targets 5'CCGG3’ sequences and cleaves
the phosphodiester bonds upstream of CpG
dinucleotide.

— Each fragment will have a CpG at each end

» RRBS-seq will cover majority of promoters and
GC rich regions
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Figure from (Lianga et al, 2014)
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RRBS data analysis workflow example

1. RRBS data preprocessing

- TrimGalore (trimming of low-quality bases, end repair biases,
adapter sequences, and overlaps between paired-end reads), fastQC
before and after TrimGalore

- Bismark-alignment

- Bismark methylation extractor to extract numbers of methylated
and unmethylated reads at each CpG site in each sample

- Excluding of samples that have low bisulfite conversion efficiency
(estimated as proportion of Cs converted to Ts in the completely
unmethylated lambda phage genome)

- Trimming of M-biases

N

. SNP detection (e.g. bis-SNP or bs-SNPer)

SNPs removed from each sample

w

. Coverage filtering

CpG sites with extremely high coverages
within each sample removed to avoid PCR
duplicates

Low-coverage CpG sites, e.g. with coverage
< 10 reads in more than 50 % of the samples
removed

4, Differential methylation analysis

- E.g. beta-binomial models are suitable for read count data:
m ~ Bin(p,n)
p ~ Beta(a, B)

(5,

. Interpretation

Annotation to genomic parts, nearest genes,
regulatory regions
Known mQTL and eQTM effects




RRBS data analysis workflow example

1. RRBS data preprocessing

- TrimGalore (trimming of low-quality bases, end repair biases,
adapter sequences, and overlaps between paired-end reads), fastQC
before and after TrimGalore

- Bismark methylation extractor to extract numbers of methylated
and unmethylated reads at each CpG site in each sample

- Excluding of samples that have low bisulfite conversion efficiency
(estimated as proportion of Cs converted to Ts in the completely
unmethylated lambda phage genome)

- Trimming of M-biases

N

. SNP detection (e.g. bis-SNP or bs-SNPer)

SNPs removed from each sample

w

. Coverage filtering

CpG sites with extremely high coverages
within each sample removed to avoid PCR
duplicates

Low-coverage CpG sites, e.g. with coverage
< 10 reads in more than 50 % of the samples
removed

4. Differential methylation analysis

- E.g. beta-binomial models are suitable for read count data:
m ~ Bin(p,n)
p ~ Beta(a, B)

v

Interpretation

Annotation to genomic parts, nearest genes,
regulatory regions

Known mQTL and eQTM effects




Aligning BS-seq reads
Bisulfite treatment introduces mutations into genomic DNA in a methylation dependent
manner
» Alignment of BS-seq reads is more challenging

» Standard alignment methods cannot be used directly

Bismark tool uses the following approach to map BS-seq reads
» Reads from a BS-seq experiment are converted into a C-to-T version and a G-to-A version
» The same conversion for the genome
» Bowtie alignment in the genome that has reduced complexity
» A unique best alignment is determined from four parallel alignment processes (see next
page)



Bismark tool
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Figure from (Krueger & Andrews, 2011)



Quantifying BS-seq data

» Bismark outputs, among others, one line per read containing useful information
» Mapping position, alignment strand, the bisulfite read sequence, its equivalent genomic
sequence and a methylation call string
» Bismark automatically extracts the methylation information at individual cytosine
positions
> For different sequence contexts (CpG, CHG, CHH; where H can be either A, T or C)
» Strand-specific or strands merged
» That is, for each cytosine Bismark outputs
» n; the number of reads covering the cytosine in sample i
» mj the number of methylated readouts (i.e., “C") for the cytosine in sample /

» One way to quantify methylation proportion is

m; the number of C reads overlapping the cytosine

Pi= n; ~ the number of C or T reads overlapping the cytosine
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Beta-binomial model

» At the end, one is typically interested in testing a hypothesis, e.g. is there a statistically
significant difference in methylation levels between group A and group B

» Some early methods applied e.g. the t-test on the estimated methylation fractions p; (or
their logit transformations)

> We will look at RadMeth tool (Dolzhenko and Smith, 2014)

» RadMeth uses the beta-binomial regression model, where beta-binomial is a compound
distribution obtained from the binomial by assuming that its probability of success
parameter follows a beta distribution



Beta-binomial model

i=1,...,s, where s is the number of biological samples
For each cytosine in the genome we have the following model

» n;: the number of reads that contain “C" or “T" readout at the cytosine in sample i

» m;: the number of reads that contain “C" readout (i.e. methylated) at the cytosine in
sample 7 (0 < m; < n;)

» If we knew the underlying methylation proportion p;, then: M; ~ Binom(p;, n;)



Beta-binomial model

i=1,...,s, where s is the number of biological samples
For each cytosine in the genome we have the following model
» n;: the number of reads that contain “C" or “T" readout at the cytosine in sample i
» m;: the number of reads that contain “C" readout (i.e. methylated) at the cytosine in
sample 7 (0 < m; < n;)
» If we knew the underlying methylation proportion p;, then: M; ~ Binom(p;, n;)
» p;: the unknown methylation level of the cytosine in sample i

> Instead of assuming a fixed (unknown) methylation level, assume p; has a compounding
distribution p; ~ Beta(a, 8), @« > 0,8 >0

» The probability of observing methylation level M; = m; for a coverage n; follows so called
beta-binomial model BetaBinomial(n;, ., 5)

1
P(M; = miln;,a, B) = /Binom(mi\Pi,”i)Beta(Pi\a,ﬁ)dpi
0

n; B(m;+a, n;y — m,—l—ﬁ)
(mi> B(Oé,ﬁ) 7

where B is the beta function



Beta-binomial model

» An illustration of binomial / beta / beta-binomial densities

binomial: p=0.8 beta-binomial: a=80, b=20 beta-binomial: a=8, b=2
0.25 0.25 0.25
0.2 0.2 0.2
0.15 0.15 0.15
0.1 0.1 0.1
0.05 T T 0.05 T T 0.05 T
o leezmooeeal LG 4 lacsocees®? o, Woo@‘?ﬁ
0 10 20 0 10 20 0 10 20
p=0.8 beta: a=80, b=20 beta: a=8, b=2
1 10 - 4
N\
I N
0.8 8 [ 7\
e /)
0.6 6 “‘ ‘ \
[ 2 / |
0.4 4 || / |
[ / |
| |
02 2 | ! \
||
/’ \
0 0 0
0 0.5 1 0 0.5 1 0 0.5 1

Binomial and beta-binomial densities



Beta-binomial model

» Mean and variance of the beta-binomial random variable are

> nmafBla+ B+ n;)

a+ B 7 T la+pRlatprl)



Beta-binomial model

» Mean and variance of the beta-binomial random variable are

and 0_2 _ ”iaﬂ(a+ﬁ+ni)
a+ 8 (a+B)2(a+B+1)

» Reparameterization

> 7= o%/a is the the average methylation level of a set of replicate samples

_ 1 . . .
> = ST s the common dispersion parameter



Beta-binomial model

» Mean and variance of the beta-binomial random variable are

and 0_2 _ ”iaﬂ(a+ﬁ+ni)
a+ 8 (a+B)2(a+B+1)

» Reparameterization
> 7= o%/a is the the average methylation level of a set of replicate samples
_ 1 . . .
> = ST s the common dispersion parameter

» This allows us to write the original model BetaBinomial(n;, a, §) equivalently as
M; ~ BetaBinomial(n;, 7, v)

where the mean and the variance are now defined as
> E(M,) = nm™
» Var(M;) = mim(1 —7)(1+ (nj — 1)5)
> That is, given 7 and =, solve for @ and 3, and evaluate pdf using BetaBinomial(n;, a, 3)

» Recall that the variance of the binomial distribution is n;w(1 — 7) which is smaller than
Var(M;) for n; > 2



GLM with beta-binomial likelihood

» In most of the real world applications, methylation levels can be confounded by one or
more factors (e.g. age and smoking)

» The generalized linear model (GLM) generalizes the linear regression to allow for response
variables that have likelihood models other than a normal distribution



GLM with beta-binomial likelihood

» For each sample i (and for each cytosine), the mean methylation level 7; depends on
covariates x; = (X1, X2, - - - ,X,-p)T

p
g(m) =Y xiB =x/B
j=1

where 3 is a p x 1 parameter vector and

10git(7r)-|og< T )

g(m)

1—7
exp(x] B3)

. = logit Y(x] B) = logistic(x] B) = ———~1 1
7r ogit™ " (x; B) = logistic(x; B) exp(xI ) + 1

» logit(-) : ]0, 1[— R, thus logit(-)~! : R —]0,1]



Model fitting and inference

v

The beta-binomial regression is fit separately for each CpG site
The parameters 3 and ~ are estimated using maximum likelihood

> E.g. iteratively reweighted least squares algorithm using a Newton-Raphson method
Test the differential methylation w.r.t. a covariate x; with parameter j;:

» Null hypothesis: 3; =0

» Estimate the full model, and the reduced model without the covariate x;
» Compare the models using log-likelihood ratio test

D— o likelihood of the reduced model
~ 7™ likelihood of the full model

p-value from chi-square test with df,; — drequced degrees of freedom, where dy,; denotes
the number of free parameters in the full model

Remember multiple testing!

Neighbouring CpGs that are detected to be statistical significant can be combined to form
differentially methylated regions (DMRs)



RadMeth application

» Neuron and non-neuron RRBS-seq samples from mouse frontal cortex: x;; € {0,1}

> 6 samples: s =6

> Two additional factors: age (x2 € Ry), sex (x3 € {0,1})

» 72 000 differentially methylated regions (DMRs) between neuron and non-neuron samples
that contain at least 10 CpGs

» DMRs with minimum methylation difference above 0.55

» 1708 lowly methylated (active) regions in neurons

» These regions are associated with (located close to) 1089 genes

» GO enrichment analysis by DAVID found a strong association of these genes with various
aspects of neuronal development and function



RadMeth application
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RRBS data analysis workflow example

1. RRBS data preprocessing

- TrimGalore (trimming of low-quality bases, end repair biases,
adapter sequences, and overlaps between paired-end reads), fastQC
before and after TrimGalore

- Bismark-alignment

- Bismark methylation extractor to extract numbers of methylated
and unmethylated reads at each CpG site in each sample

- Excluding of samples that have low bisulfite conversion efficiency
(estimated as proportion of Cs converted to Ts in the completely
unmethylated lambda phage genome)

- Trimming of M-biases

N

. SNP detection (e.g. bis-SNP or bs-SNPer)

SNPs removed from each sample

w

. Coverage filtering

CpG sites with extremely high coverages
within each sample removed to avoid PCR
duplicates

Low-coverage CpG sites, e.g. with coverage
< 10 reads in more than 50 % of the samples
removed

4, Differential methylation analysis

- E.g. beta-binomial models are suitable for read count data:
m ~ Bin(p,n)
p ~ Beta(a, B)

(5,

. Interpretation

Annotation to genomic parts, nearest genes,
regulatory regions
Known mQTL and eQTM effects




Preprocessing

l Mspl digest

5 C =37
3" - C -5

l end repair + A-tz

57— C CGA -3’
3= AGCC -5

l adapter ligation (X = adapter sequence)

57~ T'C CGA -3 OT
37 XXX AGCC T XXX -5’ OB

bisulfite treatment

l
AN

PCR amplification

of the OT strand
57~ T'C CGA -3 OT
37 -XXX AGCC GCT: -5  CTOT
PCR amplification
of the OB strand
57— TC CGA
37 AGCC TRXXKX

Figure from (Krueger 2013).
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» TrimGalore: trimming
of

> Low-quality bases
» End repair biases
» Adapter sequences
> overlaps between
paired-end reads



1. Preprocessing (steps after alignment and methylation extractor)

M-bias (Read 1)
100 20000000

CpG % methylation peak at position 1 due to selection bias

CpG % methylation peak at positions 2-3 is just noise (misread Gs

ok /0.1% of the reads say they are CpG sites, phred score 32.7 16000000 » Excl uding of sam ples
[ CHG % methylation peak at position1 is just noise (yes that ha\./e lOW. b.ISU fite
there’s a C but it’s really in CpG context) conversion efﬁaency
P (estimated as
I roportionof s
] ém converted to Ts in the
¢ s 5 one st s completely
unmethylated lambda
I phage genome)
» Trimming of M-biases
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Example M-bias plot that looks ok (for RRBS) and doesn't suggest further trimming



2. SNP detection

» Possible effects of SNPs (Liu et al. 2012):

» C to T SNPs at methylation sites might be misinterpreted as partially (50%) or completely
unmethylated Cs



2. SNP detection

» Possible effects of SNPs (Liu et al. 2012):
» C to T SNPs at methylation sites might be misinterpreted as partially (50%) or completely

unmethylated

Cs

» SNP detection: Most bisulfite sequencing protocols only convert unmethylated C, while G
on the opposing strand remains unchanged

— Detect C to T mutations using the reads from the opposite strand

True underlying
genotype given
observed reads

SNP detection by Bayesian inference

P(G|D) < P(G)P(D|G)

!

Genotype frequency
in dbSNP

The probability of observing reads
D given genotype G. This is a
function of the base calling error
rate.



3. Coverage filtering

» CpG sites with extremely high coverages within each sample removed to avoid PCR
duplicates in RRBS (although some number of overlaps are expected)

» For example, low-coverage CpG sites, i.e. with coverage < 10 reads in more than 50 % of
the samples removed



RRBS data analysis workflow example

1. RRBS data preprocessing

- TrimGalore (trimming of low-quality bases, end repair biases,
adapter sequences, and overlaps between paired-end reads), fastQC
before and after TrimGalore

- Bismark-alignment

- Bismark methylation extractor to extract numbers of methylated
and unmethylated reads at each CpG site in each sample

- Excluding of samples that have low bisulfite conversion efficiency
(estimated as proportion of Cs converted to Ts in the completely
unmethylated lambda phage genome)

- Trimming of M-biases

N

. SNP detection (e.g. bis-SNP or bs-SNPer)

SNPs removed from each sample

w

. Coverage filtering

CpG sites with extremely high coverages
within each sample removed to avoid PCR
duplicates

Low-coverage CpG sites, e.g. with coverage
< 10 reads in more than 50 % of the samples
removed

4, Differential methylation analysis

- E.g. beta-binomial models are suitable for read count data:
m ~ Bin(p,n)
p ~ Beta(a, B)

(5,

. Interpretation

Annotation to genomic parts, nearest genes,
regulatory regions
Known mQTL and eQTM effects




5. Interpretation after the differential methylation analysis

Could the differentially methylated sites/regions have an impact on the expression of some
gene?
» Nearest genes
> E.g. some GO terms enriched in the nearest genes?
> Genomic parts: intron/exon/promoter/intergenic
> R package genomation
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5. Interpretation after the differential methylation analysis

Could the differentially methylated sites/regions have an impact on the expression of some
gene?
» Nearest genes
» E.g. some GO terms enriched in the nearest genes?
> Genomic parts: intron/exon/promoter/intergenic
> R package genomation
» Enhancer regions
» GeneHancer database
» Transcription factor binding sites
» TRANSFAC (a manually curated database of transcription factor binding sites)



5. Interpretation after the differential methylation analysis

Could the differentially methylated sites/regions have an impact on the expression of some
gene?
» Nearest genes
» E.g. some GO terms enriched in the nearest genes?
> Genomic parts: intron/exon/promoter/intergenic
> R package genomation
» Enhancer regions
» GeneHancer database
» Transcription factor binding sites
» TRANSFAC (a manually curated database of transcription factor binding sites)
» mQTL and eQTM

» For human whole blood e.g. GoDMC mQTLdb (mqtldb.godmc.org.uk) or BIOS QTL
browser (genenetwork.nl)



mQTL (methylation quantitative trait loci) and eQTM (expression
quantitative trait methylation)
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Figure from (Bonder et al. 2017)
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