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 Incentives and Stability in
 Large Two-Sided Matching Markets

 By Fuhito Kojima and Parag A. Pathak*

 A number of labor markets and student placement systems can be modeled
 as many-to-one matching markets. We analyze the scope for manipulation in
 many-to-one matching markets under the student-optimal stable mechanism
 when the number of participants is large. Under some regularity conditions,
 we show that the fraction of participants with incentives to misrepresent their
 preferences when others are truthful approaches zero as the market becomes
 large. With an additional condition, truthful reporting by every participant is
 an approximate equilibrium under the student-optimal stable mechanism in
 large markets. (JEL C78)

 In recent years, game theoretic ideas have been used to study the design of markets. Auctions
 have been employed to allocate radio spectrum, timber, electricity, and natural gas involving
 hundreds of billions of dollars worldwide (Paul R. Milgrom 2004). Matching procedures have
 found practical applications in centralized labor markets as well as school assignment systems
 in New York City and Boston.1 Connections between auctions and matching have been explored
 and extended (Alexander Kelso and Vincent Crawford 1982; John Hatfield and Milgrom 2005;
 and Robert Day and Milgrom 2008).

 The practical aspects of market design have led to an enrichment of the theory of market
 design. This paper investigates a theoretical problem motivated by the use of stable matching
 mechanisms in large markets, inspired by a practical issue first investigated by Roth and Peranson
 (1999).2 A matching is stable if there is no individual agent who prefers to become unmatched
 or pair of agents who prefer to be assigned to each other to being assigned their allocation in the
 matching. In real-world applications, empirical studies have shown that stable mechanisms often
 succeed, whereas unstable ones often fail.3

 * Kojima: Cowles Foundation, Yale University, New Haven, CT 06510 (e-mail: fuhitokojimal979@gmail.com);
 Pathak: Society of Fellows, Harvard University, Cambridge, MA 02138, and Department of Economics, Massachusetts
 Institute of Technology, Cambridge, MA 02142 (e-mail: ppathak@mit.edu). We appreciate helpful discussions with
 Attila Ambrus, Eric Budish, Federico Echenique, Drew Fudenberg, Akihiko Matsui, Alvin E. Roth, Tayfun Sonmez,
 Satoru Takahashi, and seminar participants at Harvard, Hitotsubashi University, Kyoto University, Osaka University,
 Tokyo University, the 2006 North American Summer Meetings of the Econometric Society at Minneapolis, the 17th
 International Conference on Game Theory at SUNY Stony Brook, and 2006 INFORMS Annual Meeting at Pittsburgh.
 Discussions with Michihiro Kandori and Yohei Sekiguchi were especially important for the current version of the
 paper. Detailed comments by the coeditor and anonymous referees greatly improved the substance and exposition of
 the paper. For financial support, Pathak is grateful to the National Science Foundation, the Spencer Foundation, and the
 Division of Research at the Harvard Business School.

 1 For a survey of this theory, see Alvin E. Roth and Marilda A. Oliveira Sotomayor (1990). For applications to labor
 markets, see Roth (1984a) and Roth and Elliot Peranson (1999). For applications to student assignment, see for example
 Atila Abdulkadiroglu and Tayfun Sonmez (2003), Abdulkadiroglu et al. (2005), and Abdulkadiroglu, Pathak, and Roth
 (2005).

 2 A recent paper by Jeremy Bulow and Jon Levin (2006) theoretically investigates a matching market with price
 competition, motivated by an antitrust case against the National Residency Matching Program. See also Muriel Niederle
 (2007).

 3 For a summary of this evidence, see Roth (2002).
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 VOL. 99 NO. 3 KOJIMA AND PATHAK: LARGE TWO-SIDED MATCHING MARKETS 609

 Although stable mechanisms have a number of virtues, they are susceptible to various types
 of strategic behavior before and during the match. Roth (1982) shows that any stable mechanism
 is manipulable via preference lists: for some participants, reporting a true preference list (ordinal
 ranking over potential matches) may not be a best response to reported preferences of others.
 In many-to-one markets such as matching markets between colleges and students, where some
 colleges have more than one position, Sonmez (1997b, 1999) shows that there are additional stra
 tegic concerns. First, any stable mechanism is manipulable via capacities; that is, colleges may
 sometimes benefit by underreporting their quotas. Second, any stable mechanism is manipulable
 via prearranged matches; that is, a college and a student may benefit by agreeing to match before
 receiving their allocations from the centralized matching mechanism.

 Concerns about the potential for these types of manipulation are often present in real markets.
 For instance, in New York City (NYC) where the Department of Education has recently adopted
 a stable mechanism, the deputy chancellor of schools described principals concealing capacity as
 a major issue with their previous unstable mechanism: "Before you might have a situation where
 a school was going to take 100 new children for ninth grade, they might have declared only
 40 seats, and then placed the other 60 outside of the process" (New York Times, November 19,
 2004).4 Roth and Uriel G. Rothblum (1999) discuss similar anecdotes about preference manipu
 lation from the National Resident Matching Program (NRMP), which is an entry-level matching

 market for hospitals and medical school graduates in the United States.
 The aim of this paper is to understand why, despite these negative results, many stable mecha

 nisms appear to work well in practice. We focus on the student-optimal stable mechanism, which
 forms the basis of many matching mechanisms used in the field, such as in NYC and the NRMP.
 Lester E. Dubins and David A. Freedman (1981) and Roth (1982) show that students do not have
 incentives to manipulate markets with the student-optimal stable mechanism, though colleges
 do have incentives to do so. Our results show that the mechanism is immune to various kinds

 of manipulations by colleges when the market is large. In real-world two-sided matching mar
 kets, there are often a large number of applicants and institutions, and each applicant submits a
 preference list containing only a small fraction of institutions in the market. For instance, in the
 NRMP, the length of the applicant preference list is about 15, while the number of hospital pro
 grams is between 3,000 and 4,000 and the number of students is over 20,000 per year. In NYC,
 about 75 percent of students submit preference lists of fewer than 12 schools, and there are about
 500 school programs and over 90,000 students per year.5 Motivated by these features, we study
 how the scope for manipulations changes when the number of market participants grows but the
 length of the preference lists does not.
 We consider many-to-one matching markets with the student-optimal stable mechanism,

 where colleges have arbitrary preferences such that every student is acceptable, and students have
 random preferences of fixed length drawn iteratively from an arbitrary distribution. We show
 that the expected proportion of colleges that have incentives to manipulate the student-optimal
 stable mechanism when every other college is truth-telling converges to zero as the number of
 colleges approaches infinity. The key step of the proof involves showing that, when there are a

 4 A careful reader may recognize that this quote is not about a stable mechanism but about an unstable one. We
 present this quote just to suggest that strategic behavior may be a realistic problem in general. Indeed, concern about
 strategic behavior motivated New York City's recent adoption of a stable mechanism, and this paper suggests that scope
 for manipulations may be limited under the current stable mechanism despite theoretical possibility of manipulation.

 5 For data regarding the NRMP, see http://www.nrmp.org/2006advdata.pdf. For data regarding New York City high
 school match, see Abdulkadiroglu et al. (2008).
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 610 THE AMERICAN ECONOMIC REVIEW JUNE 2009

 large number of colleges, the chain reaction caused by a college's strategic rejection of a student
 is unlikely to make another, preferred student apply to that college.6
 This result does not necessarily mean that agents report true preferences in equilibrium. Thus,

 we also conduct equilibrium analysis in the large market. We introduce an additional condition,
 called sufficient thickness, and show that truthful reporting is an approximate equilibrium in a
 large market that is sufficiently thick.

 A. Related Literature

 Our paper is most closely related to Roth and Peranson (1999) and Nicole Immorlica and
 Mohammed Mahdian (2005). Roth and Peranson (1999) conduct a series of simulations on data
 from the NRMP and on randomly generated data. In their simulations, very few agents could
 have benefited by submitting false preference lists or by manipulating capacity in large markets
 when every other agent is truthful. These simulations lead them to conjecture that the fraction of
 participants with preference lists of limited length who can manipulate tends to zero as the size
 of the market grows.7

 Immorlica and Mahdian (2005), which this paper builds upon, theoretically investigate one
 to-one matching markets where each college has only one position and show that as the size of
 the market becomes large, the proportion of colleges that are matched to the same student in all
 stable matchings approaches one. Since a college does not have incentives to manipulate via pref
 erence lists if and only if it is matched to the same student in all stable matchings (see David Gale
 and Sotomayor 1985 and Gabrielle Demange, Gale, and Sotomayor 1987), this result implies that
 most colleges cannot manipulate via preference lists when the market is large.

 While this paper is motivated by these previous studies, there are a number of crucial differ
 ences. First, our focus in this paper is on many-to-one markets, which include several real-world
 markets such as the NRMP and the school choice program in NYC. In such markets a college
 can sometimes manipulate via preference lists even if the college is matched to the same set
 of students in all stable matchings.8 Moreover, in many-to-one markets there exists the addi
 tional possibilities of capacity manipulation and manipulation via pre-arrangement (unraveling)
 which are not present in a one-to-one market.9 We introduce new techniques to overcome these
 complications.

 Second, previous research mostly focuses on counting the average number of participants that
 can manipulate the student-optimal stable mechanism, assuming that others report their prefer
 ences truthfully. This leaves open the question of whether participants will behave truthfully in
 equilibrium. A substantial part of this paper investigates this question and shows that truthful
 reporting is an approximate equilibrium in a large market that is sufficiently thick.10

 6 Throughout the paper we focus on the SOSM. The college-optimal stable mechanism can be similarly defined by
 letting colleges propose to students. By making complementary assumptions about the model, we can derive results
 concerning incentives of students under the college-optimal stable mechanism similar to those in the current paper.
 However, additional assumptions may be needed for analyzing the incentives of colleges in this case, since truth-telling
 is not a dominant strategy for colleges with a quota larger than one in the college-optimal stable mechanism.

 7 The property that in large matching problems the size of the set of stable matchings has also been documented
 using data from Boston Public School's assignment system. Pathak and Sonmez (2008) report that in Boston, for the
 first two years of data from SOSM, in elementary school, the student-optimal stable matching and college-optimal
 stable matching coincide, while for middle school, at most three students are assigned to different schools in the two
 matchings.

 8 For instance, see the example in Theorem 5.10 of Roth and Sotomayor (1990).
 9 Indeed, Roth and Peranson (1999) explicitly investigate the potential for capacity manipulation in their

 simulations.
 10 Immorlica and Mahdian (2005) claim that truth-telling is an approximate equilibrium in a one-to-one market even

 without sufficient thickness. In Section IV, we present an example to show that this is not the case, but truth-telling is
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 VOL. 99 NO. 3 KOJIMA AND PATHAK: LARGE TWO-SIDED MATCHING MARKETS 611

 Incentive properties in large markets are studied in other areas of economics. For example, in
 the context of double auctions, Thomas Gresik and Mark Satterthwaite (1989), Aldo Rustichini,
 Sattherwaite, and Steven Williams (1994), Wolfgang Pesendorfer and Jeroen Swinkels (2000),
 Swinkels (2001), Drew Fudenberg, Markus Mobius, and Adam Szeidl (2005), and Martin Cripps
 and Swinkels (2006) show that the equilibrium behavior converges to truth-telling as the number
 of traders increases under various informational structures. Papers more closely related to ours
 are discussed in Section IV.

 There is a literature that analyzes the consequences of manipulations via preference lists and
 capacities in complete information finite matching markets. See Roth (1984b), Roth (1985), and
 Sonmez (1997a) for games involving preference manipulation and Hideo Konishi and Utku
 Unver (2005) and Kojima (2006) for games of capacity manipulation. Some of the papers most
 relevant to ours are discussed in Section IV.

 The paper proceeds as follows. Section I presents the model and introduces a lemma which
 is key to our analysis. Section II defines a large market and presents our main result. Section
 III conducts equilibrium analysis. Section IV concludes. All proofs are in the online Appendix
 (available at http://www.aeaweb.org/articles.php?doi=10.1257/aer.99.3.608).

 I. Model

 A. Preliminary Definitions

 Let there be a set of students S and a set of colleges C. Each student s has a strict preference
 relation Ps over the set of colleges and being unmatched (being unmatched is denoted by s).
 Each college c has a strict preference relation yc over the set of subsets of students. If s yc 0,
 then s is said to be acceptable to c. Similarly, c is acceptable to s if cPss. A market is tuple T

 = (S, C,PS, yc) where Ps = (Ps)seS, and yc = (yc)ceC
 Since only rankings of acceptable mates matter for our analysis, we often write only accept

 able mates to denote preferences. For example,

 means that student s prefers college cx most, then c2, and cx and c2 are the only acceptable
 colleges.

 For each college c G C and any positive integer qc, its preference relation yc is responsive
 with quota qc if the ranking of a student is independent of her colleagues, and any set of students
 exceeding quota qc is unacceptable (see Roth 1985 for a formal definition).11 We will assume that
 all preferences are responsive throughout the paper.

 Let Pc be the corresponding preference list of college c, which is the preference relation over
 individual students and 0. Sometimes only the preference list structure and quotas are relevant
 for the analysis. Therefore at times we abuse notation and denote by T = (S, C,P,q) an arbitrary
 market in which the preferences induce preference lists P = (P^ieSuc and quotas q = (qc)ceC
 We say that (S,C,Ps,yc) induces (S,C,P,q) in such a case. We also use the following notation:
 p-i = (pj)jesuc\i and q_c = (qc,)c>ec\c

 an approximate equilibrium under an additional assumption of sufficient thickness.
 11 Note that, given a responsive preference with quota >-c, we can always find a utility function uc: S ? R with the

 property that for all S\ S" C S such that \S'\,\S"\ <qc,S'>c S" if and only if Yeses' uc(s) > Y,ses" uc(s). In Section III,
 we will use a particular additive representation of responsive preferences.
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 612 THE AMERICAN ECONOMIC REVIEW JUNE 2009

 A matching p is a mapping from C U S to itself such that: (i) for every s, \ p(s) \ = 1, and p(s)
 = s if p(s) <? C; (ii) p(c) C 5 for every c G C; and (iii) //(s) = c if and only if s G /i(c). That
 is, a matching simply specifies the college where each student is assigned or if the student is
 unmatched, and the set of students assigned to each college, if any.
 We say a matching p is blocked by a pair of student s and college c if s strictly prefers c to

 p(s) and either (i) c strictly prefers s to some s' G p(c) or (ii) | p(c) \ < qc and s is acceptable to c.
 In other words, the student s in the pair prefers college c over her assignment in p, and college c
 prefers s either because it has a vacant seat or s is more preferred than another student assigned

 to c under p. A matching p is individually rational if for each student s e S, p(s)Ps0 or p(s) = 0,
 and for each c G C, (i) | /x(c) | < qc and (ii) s yc 0 for every s G /i(c). A matching p is stab/e if it is
 individually rational and is not blocked. A mechanism is a systematic way of assigning students
 to colleges. A stable mechanism is a mechanism that yields a stable matching with respect to
 reported preferences for every market.
 We consider the SOSM, denoted by (p, which is analyzed by Gale and Lloyd Shapley

 (1962).12

 Step 1: Each student applies to her first-choice college. Each college rejects the lowest
 ranking students in excess of its capacity and all unacceptable students among those who
 applied to it, keeping the rest of the students temporarily (so students not rejected at this step
 may be rejected in later steps).

 In general,
 Step t: Each student who was rejected in Step (t ? 1) applies to her next highest choice (if
 any). Each college considers these students and students who are temporarily held from
 the previous step together, and rejects the lowest-ranking students in excess of its capacity
 and all unacceptable students, keeping the rest of the students temporarily (so students not
 rejected at this step may be rejected in later steps).

 The algorithm terminates either when every student is matched to a college or every unmatched
 student has been rejected by every acceptable college. The algorithm always terminates in a
 finite number of steps. Gale and Shapley (1962) show that the resulting matching is stable. For
 two preference relations that induce the same pair of preference lists and quotas, the outcome of
 the algorithm is the same. Thus, we sometimes write the resulting matching by cp(S, C,P,q). We
 denote by (f(S, C,P,q)(i) the assignment given to * G S U C under matching <p(S, C,P,q).

 B. Manipulating the Student-Optimal Stable Mechanism

 We illustrate two ways that the SOSM can be manipulated through a simple example.

 EXAMPLE 1: Consider the following market with two colleges cx and c2, and five students
 sx,..., s5. Suppose qC] = 3 and qCl ? 1, and the preference lists of colleges are

 Pcx '. Si,S2,S2,S4,S5,

 *c2 : s39S2>sl9S4is5i

 12 The SOSM is known to produce a stable matching that is unanimously most preferred by every student among all
 stable matchings (Gale and Shapley 1962).
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 VOL. 99 NO. 3 KOJIMA AND PATHAK: LARGE TWO-SIDED MATCHING MARKETS 613

 and student preferences are

 PSi: c2,cx,

 PSz: cx,c2,

 Ps/'Cl,C2,

 Ps4 : chc2>

 Ps$: cx,c2.

 The matching produced by the SOSM is

 _ / S2 $3 S4 Sx \ v-\cxcxcxc2y

 which means that cx is matched to s2, s3, and s4, c2 is matched to sx, and s5 is unmatched.13

 The first type of manipulation we will focus on is a preference manipulation (manipulation
 via preference lists), first identified by Dubins and Freedman (1981). Suppose college cx submit
 ted the following preference list:

 PCl Si,S2,S^,S^9S2,

 while reporting its true quota, 3. Then the SOSM produces the following matching:

 ,/_ ls\ S2 S5 s3 \
 i1 -\cx cx cx c2y

 If cx prefers {s,1,s2,s,5}to {s^s^s^, say because student sx is particularly desirable, then it can
 benefit by misreporting its preferences.14

 Another way a stable mechanism can be manipulated, identified by Sonmez (1997b), is by
 capacity manipulation (manipulation via capacities). Suppose that college cx states its quota as
 q'c = 1, while reporting its preference list Pc truthfully. Then the SOSM produces the following
 matching:

 If sx is more desirable than {s2,s3,s4}, then college cx can benefit by reporting q'Cx = I.15
 These two cases illustrate how the SOSM can be manipulated. We will consider both prefer

 ence and capacity manipulations and their combination, and refer to this as a manipulation:

 13 Similar notation is used throughout the paper.
 14 Note that relation {si,^*^} >~c, fc^*^} is consistent with the assumption that >-c is responsive.
 15 We note that, in this example, capacity manipulation may not benefit cx for some responsive preferences consistent

 with a fixed preference list PC{. Both 5j >-Ci {s2,s3,s4} and {s2,s3,s4} yflsi are consistent with PCi, and capacity manipula
 tion q'Cl benefits cx in the former but not in the latter. Konishi and Unver (2006) and Kojima (2007b) characterize the
 subclass of responsive preferences under which capacity manipulations benefit manipulating colleges under stable

 mechanisms. For preference manipulations, on the contrary, there may exist manipulations that benefit the manipulat
 ing college for all responsive preferences that are consistent with a given preference list. In the current example, for
 instance, if cl declares PCi : sl,s2,s4,s5, then c{ is matched to {shs2,s4}. This is unambiguously preferred by cx to the

 match under truth-telling {s2,s3,s4} for any responsive preferences consistent with Pc.
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 614 THE AMERICAN ECONOMIC REVIEW JUNE 2009

 DEFINITION 1: A college c can manipulate the SOSM if there exists a pair of a preference list
 and a quota (Pc'> q'c) with q'c G {7, ..., qc} such that

 <p(S,C,(PM,(q'c,q.c))(c) K <P{S,CP,q)(c).

 We assume q'c < qc because it is easily seen that reporting a quota larger than its true quota is
 never profitable.

 C. Dropping Strategies

 The previous section presented an example illustrating preference and capacity manipulations.
 To study how likely it is that manipulations are successful, one way to begin may be to consider
 all possible strategies of a particular college. For a college with a preference list of five students
 and a quota of three as in Example 1, this would involve considering all possible combinations of
 preference lists and quotas, which is 975 possible strategies, and verifying whether any of these
 strategies benefits the college.16

 Fortunately, there is a general property of the manipulations we have discussed that allows
 us to greatly simplify the analysis and is one of the main building blocks of the analysis that
 follows. A reported pair of a preference list and a quota is said to be a dropping strategy if it
 simply declares some students who are acceptable under the true preference list as unacceptable.
 In particular, it does not misreport quotas, change the relative ordering of acceptable students, or
 declare unacceptable students as acceptable.17

 Returning to our example before, the outcome of the previous preference manipulation P'c can
 be achieved by the dropping strategy Pc" sus2> s5, which simply drops students s3 and s4 from the
 true preference list. In the case of the previous capacity manipulation, if the college just dropped
 all students except sx, then it would receive the same outcome as reducing the quota to one. Note
 that in both of these cases, the original ordering of students is unchanged and only students on
 the original preference list are dropped.

 The observation above turns out to be general for any stable mechanism. The following lemma,
 which is formally stated and proved in Appendix B, shows that the outcome of any manipulation
 can be replicated or improved upon by some dropping strategy.

 LEMMA 1 (Dropping strategies are exhaustive): Consider an arbitrary stable mechanism. Fix
 preferences of colleges other than c. Suppose the mechanism produces li under some report of
 c. Then there exists a dropping strategy that produces a matching that c weakly prefers to 11
 according to its true preferences.

 Some intuition for this result can be seen in the example above. Consider a preference manipu

 lation P'Cx, which demoted s3 to the bottom of the list of acceptable students. At one step of the
 SOSM, s3 is rejected by Pc', because three other students applied to cx, and S3 is declared to be the
 least desirable. Then s3 applies to c2, which rejects sx. Then sx applies to cx which accepts her,
 which benefits cx. A similar chain of rejection and acceptances can be initiated if cx declares just
 53 as unacceptable. Similarly, additional chains of rejections and acceptances produced by under
 reporting of quotas can be replicated by declaring some students as unacceptable instead.

 16 All possible combinations are calculated by observing that there are 51 + 5x4x3x2 + 5x4x3 + 5x4 + 5
 ways to submit preference lists and 3 ways to report capacities.

 17 Let (Pc, qc) be a pair of the true preference list and true quota of college c. Formally, a dropping strategy is a report
 (Pc,qc) such that (i) sPcs' and sP$ imply sP^s', and (ii) 0Pcs implies 0Pc'.s.
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 VOL. 99 NO. 3 KOJIMA AND PATHAK: LARGE TWO-SIDED MATCHING MARKETS 615

 There are a few remarks about this lemma. First, while most of our analysis focuses on the
 SOSM, the lemma identifies a general property of any stable matching mechanism, which may
 be of independent interest. Second, a truncation strategy that drops students only from the end
 of its preference list can replicate any profitable manipulation in a simpler one-to-one matching
 market (Roth and John H. Vande Vate 1991), and our lemma offers its counterpart in a more
 general many-to-one matching market.18 Finally, and most important in the context of our work,
 the lemma allows us to focus on a particular class of strategies to investigate manipulations. In
 the previous example, we need only consider 215' = 25 = 32 possible dropping strategies instead
 of all 975 strategies. In addition to being small in number, the class of dropping strategies turns
 out to be conceptually simple and analytically tractable.

 II. Large Markets

 A. Regular Markets

 We have seen that a finite many-to-one matching market can be manipulated. To investigate
 how likely a college can manipulate the SOSM in large markets, we introduce the following ran
 dom environment. A random market is a tuple f = (C,S, yc,k,V), where & is a positive integer
 and V = (pc)ceC is a probability distribution on C We assume that/?c > 0 for each c G C.19 Each
 random market induces a market by randomly generating preferences of each student s as follows

 (Immorlica and Mahdian 2005):

 Step 1: Select a college independently from distribution V. List this college as the top ranked
 college of student s.

 In general,
 Step t < k: Select a college independently from distribution V until a college is drawn that
 has not been previously drawn in steps 1 through t ? 1. List this college as the rth most pre
 ferred college of student s.

 Student s finds these k colleges acceptable, and all other colleges unacceptable. For example,
 if V is the uniform distribution on C, then the preference list is drawn from the uniform distribu

 tion over the set of all preference lists of length k. For each realization of student preferences, a
 market with perfect information is obtained.

 In the main text of the paper, we focus on the procedure above for distribution V to generate
 preferences of students for the sake of simplicity. For readers interested in how this can be gener
 alized, we refer to the discussion in Section IV and Appendix A.5, where we describe additional
 results under weaker assumptions.

 A sequence of random markets is denoted by (f *, f2,...), where fn = (Cn, Sn, yCn, kn,Vn) is a
 random market in which | Cn \ = n is the number of colleges.20 Consider the following regularity
 conditions.

 18 Truncation strategies have found use in subsequent work, such as Roth and Peranson (1999), Roth and Rothblum
 (1999), Jinpeng Ma (2002), and Lars Ehlers (2004). Truncation strategies may not be exhaustive when colleges may
 have a quota larger than one. For instance, in Example 1 we have seen that cx can be matched with {si, 52**5} by a drop
 ping strategy P'c\, but such a matching or anything better for c, cannot be attained by a truncation strategy.

 19 We impose this assumption to compare our analysis with existing literature. Our analysis remains unchanged
 when one allows for probabilities to be zero.

 20 Unless specified otherwise, our convention is that superscripts are used for the number of colleges present in the
 market, whereas subscripts are used for agents.
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 616 THE AMERICAN ECONOMIC REVIEW JUNE 2009

 DEFINITION 2: A sequence of random markets (T\ T2,...) is regular if there exist positive
 integers k and q such that

 (1) fcn = fcforallrc,

 (2) qc < q for c e Cn and all n,

 (3) \Sn\ < qn for all n,21 and

 (4) for all n and c e Cn, every s e Sn is acceptable to c.

 Condition (1) assumes that the length of students' preference lists does not grow when the
 number of market participants grows. Condition (2) requires that the number of positions of
 each college is bounded across colleges and markets. Condition (3) requires that the number of
 students does not grow much faster than that of colleges. Condition (4) requires colleges to find
 any student acceptable, but preferences are otherwise arbitrary.22 This paper focuses on regular
 sequences of random markets and makes use of each condition in our arguments. In the last sec
 tion, we will discuss directions in which these conditions can be weakened.

 B. Main Result

 Consider the expected number of colleges that can manipulate the SOSM when others are
 truthful. Formally, such a number is defined as

 a(n) = ?[#{c G C \ <p(S,C,(P^,P_c),(q'c,q_c))(c) ^c <p(S,C,P,q)(c)

 for some (P'c,q$ in the induced market} | Tn).

 The expectation is taken with respect to random student preferences, given the random mar
 ket Tn. Note that we consider the possibility of manipulations under complete information, that
 is, we investigate for colleges' incentives to manipulate when they know the preferences of every
 agent. The randomness of student preferences is used only to assess the frequency of situations
 in which colleges have incentives to manipulate.

 THEOREM 1: Suppose that the sequence of random markets is regular. Then the expected pro
 portion of colleges that can manipulate the SOSM when others are truthful, a(ri)/n, goes to zero
 as the number of colleges goes to infinity.

 This theorem suggests that manipulation of any sort within the matching mechanism becomes
 unprofitable to most colleges, as the number of participating colleges becomes large. In Appendix
 A, we show that a manipulation that involves unraveling outside the centralized mechanism,

 21 As mentioned later, this condition can be relaxed to state: there exists q such that \Sn\ <qn for any n (in other
 words, here we are assuming q = q just for expositional simplicity). In particular, the model allows situations in which
 there are more students than the total number of available positions in colleges.

 22 Condition (4) ensures that our economy has a large number of individually rational matchings, so potentially there
 is nontrivial scope for manipulations. It is possible to weaken this condition such that many, but not all, colleges find
 all students to be acceptable.
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 VOL. 99 NO. 3 KOJIMA AND PATHAK: LARGE TWO-SIDED MATCHING MARKETS 617

 named manipulation via pre-arranged matches (Sonmez 1999), also becomes unprofitable as the
 market becomes large.

 A limitation of Theorem 1 is that it does not imply that most colleges report true preferences
 in equilibrium. Equilibrium analysis is conducted in the next section.

 The theorem has an implication about the structure of the set of stable matchings. It is well
 known that if a college does not have incentives to manipulate the SOSM, then it is matched to
 the same set of students in all stable matchings. Therefore the following is an immediate corol
 lary of Theorem 1.

 COROLLARY 1: Suppose that the sequence of random markets is regular. Then the expected
 proportion of colleges that are matched to the same set of students in all stable matchings goes
 to one as the number of colleges goes to infinity.

 Corollary 1 is referred to as a "core convergence" result by Roth and Peranson (1999). The
 main theorem of Immorlica and Mahdian (2005) shows Corollary 1 for one-to-one matching, in
 which each college has a quota of one.

 The formal proof of Theorem 1 is in Appendix B. For the main text, we give an outline of
 the argument. We begin the proof by recalling that if a college can manipulate the SOSM, then
 it can do so by a dropping strategy. Therefore, when considering manipulations, we can restrict
 attention to a particular class of strategies that simply reject students who are acceptable under
 the true preferences.

 The next step involves determining the outcome of dropping strategies. One approach might
 be to consider all possible dropping strategies and determine which ones are profitable for a col
 lege. While the set of dropping strategies is smaller than the set of all possible manipulations,
 this task is still daunting because the number of possible dropping strategies is large when there
 is a large number of students.

 Thus, we consider an alternative approach. We start with the student-optimal stable matching
 under the true preferences, and examine whether a college might benefit by dropping some stu
 dent assigned in the student-optimal matching. Specifically, we consider a process where begin
 ning with the student-optimal matching under true preferences, we drop some students from a

 particular college's preference list and continue the SOSM procedure starting with the original
 students rejected by the college because of the dropping. We refer to this process as rejection
 chains.23

 For instance, in Example 1, starting with the student-optimal stable matching, if college cx
 dropped students {s3, s4}, let us first consider what happens to the least preferred student in this
 set, student s4. If we examine the continuation of the SOSM, when s4 is rejected, this student will
 propose to c2, but c2 is assigned to sx whom it prefers, so s4 will be left unassigned. Thus, college
 Cj does not benefit by rejecting student s4 in this process, because this rejection does not spur
 another more preferred student to propose to cx. On the other hand, consider what happens when
 college cx rejects student s3. This student will propose to college c2, who will reject sh freeing
 Si up to propose to cx. By dropping s3, college cx has created a new proposal which did not take
 place in the original SOSM procedure.

 Our rejection chains procedure results in two cases: (i) a rejection never leads to a new pro
 posal at the manipulating college as in the case of s4, and (ii) a rejection leads to a new student
 proposal at the college as in the case of s3. The example above suggests that case (i) is never
 beneficial for the manipulating college, whereas case (ii) may benefit the college. In Lemma 3 in

 23 This process is formally defined in the Appendix B.
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 the Appendix, we make this intuition precise: if the rejection chain process does not lead to a new
 proposal (case (i)), then a college cannot benefit from a dropping strategy.24 This result allows us
 to link the dropping strategy to the rejection chains algorithm. This connection gives us traction
 in large markets, as the number of cases to consider is bounded by a constant 1? for rejection
 chains, whereas there are 2'5"' potential dropping strategies in a market with n colleges, and the
 latter number may approach infinity as n approaches infinity.
 The last step of the proof establishes that the probability that a rejection chain returns to the

 manipulating college is small when the market is large. To see the intuition for this step, suppose
 that there is a large number of colleges in the market. Then there is also a large number of col
 leges with vacant positions with high probability. We say that a college is popular if it is given a
 high probability in the distribution from which students preferences are drawn. Any student is
 much more likely to apply to one of those colleges with vacant positions rather than the manipu
 lating college unless it is extremely popular in a large market, since there is a large number of
 colleges with vacant positions. Since every student is acceptable to any college by assumption,
 the rejection chains algorithm terminates without returning to the manipulating college if such
 an application happens. Thus, the probability that the algorithm returns to the manipulating col
 lege is very small unless the college is one of the small fraction of very popular colleges. Note
 that the expected proportion of colleges that can manipulate is equal to the sum of probabilities
 that individual colleges can manipulate. Together with our earlier reasoning, we conclude that
 the expected proportion of colleges that can successfully manipulate converges to zero when the
 number of colleges grows.

 Both Roth and Peranson (1999) and Immorlica and Mahdian (2005) attribute the lack of
 manipulability to the "core-convergence" property as stated in Corollary 1. While this interpre
 tation is valid in one-to-one markets, the fact that a college is matched to the same set of stu
 dents in all stable matchings is necessary but not sufficient for the college to have incentives for
 truth-telling in many-to-one markets. Instead, our arguments show that lack of manipulability
 comes from the "vanishing market power" in the sense that the impact of strategically rejecting
 a student will be absorbed elsewhere and rarely affects the college that manipulated when the
 market is large.

 Roth and Peranson (1999) analyze the NRMP data and argue that of the 3,000-4,000 par
 ticipating programs, less than one percent could benefit by truncating preference lists or via
 capacities, assuming the data are true preferences. They also conduct simulations using ran
 domly generated data in one-to-one matching, and observe that the proportion of colleges that
 can successfully manipulate quickly approaches zero as n becomes large. The first theoretical
 account of this observation is given by Immorlica and Mahdian (2005), who show Corollary 1
 for one-to-one matching. Theorem 1 improves upon their results and fully explains observations
 of Roth and Peranson (1999) in the following senses: (i) it studies manipulations via preference
 lists in many-to-one markets, and (ii) it studies manipulations via capacities. Neither of these
 points is previously investigated theoretically. Furthermore, we strengthen assertions of Roth and
 Peranson (1999) and Immorlica and Mahdian (2005) by showing that large markets are immune
 to arbitrary manipulations and not just misreporting preference lists or misreporting capacities.

 III. Equilibrium Analysis

 In the last section, we investigated individual colleges' incentives to manipulate the SOSM
 when all agents are truth-telling. As noted in the previous section, Theorem 1 does not necessarily

 24 We note that the manipulating college may not be made better off even when the rejection chain leads to a new
 proposal to the college (case (ii)).
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 mean that agents report true preferences in equilibrium. We now allow all participants to behave
 strategically and investigate equilibrium behavior in large markets. This section focuses on the
 simplest case to highlight the analysis of equilibrium behavior. Appendix A.5 presents the more
 general treatment incorporating heterogeneous distributions of student preferences.

 To investigate equilibrium behavior, we first define a normal-form game as follows. Assume
 that each college c G C has an additive utility function 2s ? R on the set of subsets of students.

 More specifically, we assume that

 u /y/X f= Uses'"M if \s'\ < 4c>
 [ < 0 otherwise,

 where uc(s) = uc({s}). We assume that sPcs' <& uc(s) > uc(s'). If s is acceptable to c, uc(s) > 0. If s
 is unacceptable, uc(s) < 0. Further, suppose that utilities are bounded. Formally, sup wc(.y) is finite

 where the supremum is over the size of the market n, students s G Sn, and colleges c G Cn.
 The normal-form game is specified by a random market T coupled with utility functions of

 colleges, and is defined as follows. The set of players is C, with von Neumann-Morgenstern
 expected utility functions induced by the utility functions above. All the colleges move simulta
 neously. Each college submits a preference list and quota pair. After the preference profile is sub
 mitted, random preferences of students are realized according to the given distribution V. The
 outcome is the assignment resulting from (p under reported preferences of colleges and realized
 students preferences. We assume that college preferences and distributions of student random
 preferences are common knowledge, but colleges do not know realizations of student preferences
 when they submit their preferences.25 Note that we assume that students are passive players and
 always submit their preferences truthfully. A justification for this assumption is that truthful
 reporting is weakly dominant for students under ip (Dubins and Freedman 1981; Roth 1982).

 First, let us define some additional notation. Let Pc = (Pc)ceC and Pc-c ? (Pc')c'ec,c?c- Given e
 > 0, a profile of preferences (Pc,qc) = (P*,q*)cec *s an s-Nash equilibrium if there is no c G C
 and(Pc',q'c) such that

 where the expectation is taken with respect to random preference lists of students.
 Is truthful reporting an approximate equilibrium in a large market for an arbitrary regular

 sequence of random markets? The answer is negative, as shown by the following example.26

 EXAMPLE 2: Consider the following market Yn for any n. There are n colleges and students.
 Preference lists ofcx and c2 are given as follows:21

 Pc2 : SUS2> '"

 25 Consider a game with incomplete information, in which each college knows other colleges' preferences only
 probabilistically. The analysis can be easily modified for this environment. See Appendix A.4.

 26 This example shows that Corollaries 3.1 and 3.3 in Immorlica and Mahdian (2005) are not correct.
 27 "..." in a preference list means that the rest of the preference list is arbitrary after those written explicitly.
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 Suppose that/7c" = p?2 = 1/3 and/?cn = l/(3(n - 2)) for any n > 3 and each c ^ q,^.28 With
 probability [/?" p?2/(l - p?,)] x [/?", Pc2/(1 - /??)] = 1/36, preferences of ^ and s2 are given by

 PSx\cx,c2,...,

 Ps2 : C2,C],....

 Under the student-optimal matching p, we have p(cx) = sx and ^(c2) = s2. Now, suppose that

 cx submits preference list Pc[ : s2. Then, under the new matching p!, cx is matched to p'(cx) = s2,
 which is preferred to p(cx) = sx. Since the probability of preference profiles where this occurs is
 1/36 > 0, regardless of n > 3, the opportunity for preference manipulation for cx does not vanish
 even when n becomes large. Therefore truth-telling is not an ?-Nash equilibrium if e > 0 is suf
 ficiently small, as cx has an incentive to deviate.
 The example above shows that, while the proportion of colleges that can manipulate via pref

 erence lists becomes small, for an individual college the opportunity for such manipulation may
 remain large. Note, on the other hand, that this is consistent with Theorem 1 since the scope for
 manipulation becomes small for any c ^ cx,c2.29

 A natural question is under what conditions we can expect truthful play to be an ?-Nash equi
 librium. One feature of Example 2 is that cx and c2 are popular and remain so even as the market
 becomes large. This suggests that it is the colleges that are extremely popular and remain so in a
 large market that may be able to manipulate.
 Consider a market where there is not too much concentration of popularity among a small

 set of colleges. This feature of the market will reduce the influence of the exceptionally popular
 colleges that we observed in Example 2. One way to formally define this situation is to consider
 a sequence of random markets with the following property: there exists a finite bound T and frac
 tion of a colleges such that

 (i) pVpU < t,

 for large n, where p\ is the popularity of the most popular college and p"anX is the popularity of
 the <zth-tile college in market Tn. The condition means that the ratio of the popularity of the most

 popular college to the popularity of the college at the ath-tile does not grow without bound as the
 size of the market grows. This condition is satisfied if there is not a small number of colleges that
 are much more popular than all of the other colleges.

 In Example 2, when n is large, p?Jpc2 = 1, but pZJp" = n ? 2 when c is not college cx or c2,
 and this ratio grows without bound as n ?> oo. We will show later that inequality (1) is sufficient
 for truth-telling to be an e-Nash equilibrium.
 While this condition is easy to explain, it is not the most general condition that will ensure

 truthful play. Appendix A.3 presents additional examples with weaker assumptions. We can
 describe a more general condition with the help of additional notation. Let

 VT(n) = {ceCn\ max {/?}//? < T, #{s e Sn \ cPss} < qc}. c' Cn

 28 We use superscript n on pc to indicate the probability of college c for market T". This notation is used in subse
 quent parts of the text.

 29 Capacity manipulation may remain profitable for some colleges in a large market as well. See the Appendix A.6
 for an example illustrating this point.
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 In words, VT(n) is a random set that denotes the set of colleges sufficiently popular ex ante
 (maxc' {Pc}/Pc < T) but there are fewer potential applicants than the number of positions
 (#{s G Sn | cPss} < qc) ex post.

 DEFINITION 3: A sequence of random markets is sufficiently thick if there exists T G R such
 that

 ?[|VY(n)|]-+oc,

 as n ?* oo.

 The condition requires that the expected number of colleges that are desirable enough, yet have
 fewer potential applicants than seats, grows fast enough as the market becomes large. Consider
 a disruption of the market in which a student becomes unmatched. If the market is thick, such a
 student is likely to find a seat in another college that has room for her. Thus the condition would
 imply that a small disruption of the market is likely to be absorbed by vacant seats.30 In the
 example above, it is easy to verify that the market is not sufficiently thick. However, many types
 of markets satisfy the condition of sufficient thickness. For instance, if all student preferences are
 drawn from the uniform distribution, the market will be sufficiently thick. This is the environ
 ment first analyzed by Roth and Peranson (1999). The sufficient thickness condition is satisfied
 in more general cases, which are described in Appendix A.3.

 THEOREM 2: Suppose that the sequence of random markets is regular and sufficiently thick.
 Then, for any e > 0, there exists n0 such that truth-telling by every college is an e-Nash equilib
 rium for any market in the sequence with more than n0 colleges.

 The proof of Theorem 2 (shown in Appendix B.3) is similar to that of Theorem 1, except for
 one point. With sufficient thickness, we can make sure that the rejection chain fails to return to
 any college with high probability, as opposed to only unpopular ones. This is because, with suf
 ficient thickness, in a large market there are many vacant positions that are popular enough for
 students to apply to with a high probability, and hence terminate the algorithm. The key differ
 ence is that, in this section, we have an upper bound of the probability of successful manipula
 tion for every college, while in the previous section, we have an upper bound only for unpopular
 colleges.

 We pursue generalizations of this result in the Appendix. First, we consider an incomplete
 information environment and show the conditions needed for truth-telling to be an e-Bayesian
 equilibrium of the game (Appendix A.4). Second, we obtain a similar result when we allow for
 the possibility of pre-arrangement (Appendix A.6). Third, when we allow a coalition of colleges
 to manipulate, we extend the result to show the conditions under which coalitions of colleges will
 have little incentive to manipulate (Appendix A.7). The precise statements and details of each of
 these extensions is in the corresponding sections of the Appendix.

 30 This condition refers to the limit as the size of the market becomes large, so this notion is not relevant to a par
 ticular finite market. Thickness and the size of the market are not related. It is even possible that the market does not
 become "thick" even when the market becomes large, in the sense that the limit in the definition above is finite as n
 goes to infinity.
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 IV. Discussion and Conclusion

 Why do many stable matching mechanisms work in practice, even though existing theory
 suggests that they can be manipulated in many ways? This paper established that the fraction of

 participants who can profitably manipulate the student-optimal stable mechanism (SOSM) in a
 large two-sided matching market is small under some regularity conditions. We further showed
 that truthful reporting is an approximate equilibrium in large markets that are sufficiently thick.
 These results suggest that a stable matching will be realized under the SOSM in a large market.
 Since a stable matching is efficient in general, the results suggest that the SOSM achieves a high
 level of efficiency in a large market.31 Taken together, these results provide a strong case for the
 SOSM as a market design in large markets.

 Based on the results in this paper, when do we expect certain matching mechanisms to be hard
 to manipulate? We will highlight three crucial assumptions here. First, our result is a limit result,
 and requires that the market is regular and large.32 As discussed below, in a finite economy,
 the possibility of manipulation cannot be excluded without placing restrictive assumptions on
 preferences. Our results suggest that larger markets employing the SOSM will be less prone to
 manipulation than smaller markets, holding everything else the same.

 Second, we have required that the length of the student preference list is bounded. As men
 tioned in the introduction, the primary motivation for this assumption is empirical. In the NRMP,
 the length of applicant preference lists is typically less than or equal to 15. In NYC, almost
 75 percent of students ranked fewer than the maximum of 12 schools in 2003-04 and there
 were over 500 programs to choose from.33 In Boston public schools, which recently adopted the
 SOSM, more than 90 percent of students ranked 5 or fewer schools at elementary school during
 the first and second year of the new mechanism, and there are about 30 different elementary
 schools in each zone.34 The conclusions of our results are known to fail if the assumption of
 bounded preference lists is not satisfied, and instead students regard every college as acceptable
 (Donald Knuth, Rajeev Motwani, and Boris Pittel 1990). Roth and Peranson (1999) conduct
 simulations on random data illustrating this point.
 One reason students do not submit long preference lists is that it may be costly for them to do

 so. For example, medical school students in the United States have to interview to be considered
 by residency programs, and financial and time constraints can limit the number of interviews.
 Likewise, in public school choice, to form preference lists students need to learn about the pro
 grams they may choose from, and in many instances they may have to interview or audition
 for seats. Another reason may be that there is an exogenous restriction on the length of stu
 dent preference lists as in NYC. However, there is an additional concern for manipulation under
 such exogenous constraints on preference lists, since students may not be able to report their
 true preferences under the restriction.35 We submit as an open question how the large market

 31 In a somewhat different model of matching with price competition, Bulow and Levin (2006) show that stable match
 ing mechanisms in their environment achieve high efficiency when there is a large number of market participants.

 32 It is easy to relax some of our conditions on the definition of a regular market. For instance, our assumption on
 bounded preference lists could be generalized to state: there is a sequence (k")^ with lim^^ (kn/ln(n)) = 0 such that,
 for any n and any student in Sn, the length of her preference list for the student is at most k". Similarly, the condition on
 the number of students can be relaxed to state: there exists q such that \Sn\ < qn for any n.

 33 In subsequent years, the fraction of students with preference lists of fewer than 12 schools ranged between 70
 percent and 78 percent.

 34 There is a total of 84 different elementary schools in the entire city. A small handful of these programs are city
 wide, and can be ranked by a student who lives in any zone. There is also a small fraction of students who can apply
 across zones because they live near the boundary of two zones.

 35 NYC is a two-sided matching market using the SOSM, which has an explicit restriction on the number of choices
 that can be ranked. Note, however, that even in NYC, in the first year of data from the new system about 75 percent of
 students rank fewer than the maximum number of 12 schools in the main round, so our analysis may still hold approxi
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 argument may be affected when there is a restriction on the length of the preference list (see
 Guillaume Haeringer and Flip Klijn (2007) for analysis in this direction, though in the finite
 market setting).

 Finally, our analysis relies on the distributional assumptions on student preferences. For any
 given number of colleges in the market, with enough data on the distribution of student prefer
 ences and college preferences, our methods can be adapted to obtain the bound on the potential
 gain from deviation from truth-telling. However, to verify whether a market is sufficiently thick
 requires making assumptions on college popularity as the market grows.

 The main text has focused on a particular process for generating student preferences. Some
 distributions are excluded by this specification. For example, we assume that preferences of stu
 dents are independently drawn from one another, and they are drawn from an identical distribu
 tion. The i.i.d. assumption and the particular process we analyzed in the main text excludes, for
 example, cases where students in a particular region are more likely to prefer colleges in that
 region than students in other regions.

 In the Appendix A.5, however, we analyze a more general model that allows students to belong
 to one of several groups and draw their preferences from different distributions across groups.

 We believe that the model with group-specific student preferences may be important for studying
 a number of real-world markets, for participants may often have systematically different prefer
 ences according to their residential location, academic achievement, and other characteristics.
 For instance, in NYC, more than 80 percent of applicants rank a program that is in the borough
 of their residence as their top choice, for all four years we have data. We show that truthful
 reporting is an approximate equilibrium in large markets that are sufficiently thick when this sort
 of heterogeneity across groups is present.

 Our result is known to fail when there is some form of interdependence of student preferenc
 es.36 Obtaining the weakest possible condition on the distribution of preferences for our result to
 hold is a challenging problem for future work.

 Another direction for generalization is to consider weakening the assumption of responsive
 preferences, or considering models of matching with transfers. With general substitutable pref
 erences, however, telling the truth may not be a dominant strategy for students. Hatfield and

 Milgrom (2005) have shown that substitutable preferences, together with the "law of aggregate
 demand," is sufficient to restore the dominant strategy property for students. It would be interest
 ing to investigate if a result similar to ours holds in this environment.

 A. Large Markets and Matching Market Design

 Our results have established the virtues of the student-optimal stable mechanism in a large
 market. This may serve as one criterion to support its use as a market design, since other mecha
 nisms may not share the same properties in a large market. To see this point, consider the so
 called Boston mechanism (Abdulkadiroglu and Sonmez 2003), which is often used for real-life
 matching markets. The mechanism proceeds as follows:37

 mately. The only other example we are aware of is Spanish college admissions studied by Antonio Romero-Medina
 (1998).

 36 Immorlica and Mahdian (2005) present a model in which preferences cannot be generated by our procedure, and
 the fraction of colleges that can manipulate does not go to zero even as the size of the market goes to infinity. Since their
 environment is a special case of ours, it shows that some assumptions similar to ours are needed to obtain our results.

 37 With slight abuse of terminology, we will refer to this mechanism where colleges rank students as the Boston
 mechanism, even though the Boston mechanism was introduced as a one-sided matching mechanism. That is, college
 preferences are given as an exogenously given priority structure.
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 Step 1: Each student applies to her first choice college. Each college rejects the lowest
 ranking students in excess of its capacity and all unacceptable students.

 In general,
 Step t: Each student who was rejected in the last step proposes to her next highest choice.
 Each college considers these students, only as long as there are vacant positions not filled
 by students who are already matched by the previous steps, and rejects the lowest-ranking
 students in excess of its capacity and all unacceptable students.

 The algorithm terminates either when every student is matched to a college or when every
 unmatched student has been rejected by every acceptable college.38

 Under the Boston mechanism, colleges have no incentive to manipulate either via preference
 lists or via capacity, even in a small market with an arbitrary preference profile (Haluk Ergin and
 Sonmez 2006). Nevertheless, we argue that this mechanism performs badly both in small and
 large markets. The problem is that students have incentives to misrepresent their preferences, and

 there is evidence that some participants react to these incentives (Abdulkadiroglu et al. 2006). An
 example in Appendix A.8 shows that students' incentives to manipulate the Boston mechanism
 remain large even when the number of colleges increases in a regular sequence of markets.

 We view this paper as one of the first attempts in the matching literature to show how perfor
 mance of matching mechanisms in large economies can be used to compare mechanisms. One
 traditional approach in the matching literature is to find restrictions on preferences to ensure
 that a mechanism produces a desirable outcome. Jose Alcalda and Salvador Barbera (1994)
 investigate this question focusing on preference manipulation, and Onur Kesten (2008), Kojima
 (2007b), and Konishi and Unver (2006) focus on capacity manipulation and manipulation via
 pre-arranged matches. One message from these papers is that the conditions that prevent the
 possibility of manipulation are often quite restrictive. In this paper, we have developed a different
 approach, which uses large market arguments to obtain possibility results.

 More generally, we think that the kind of large market arguments similar to that in the cur
 rent paper will be fruitful in future work on matching and related allocation mechanisms. In the
 problem of allocating indivisible objects such as university housing, Kojima and Mihai Manea
 (2008) show that the probabilistic serial mechanism, which has desirable efficiency and fairness
 properties (Anna Bogomolnaia and Herve Moulin 2001), also has a desirable form of incentive
 compatibility in a large market. In the kidney exchange problem, Roth, Sonmez, and Unver
 (2004, 2007) show that efficiency can be achieved by conducting only kidney exchanges of small
 sizes when the number of incompatible patient-donor pairs is sufficiently large. Both of these are
 cases where large market arguments support a particular matching market design.

 There are also open questions where large market analysis may yield new insights. Roth
 (2007) suggests that large market arguments may be useful to understand why a stable matching

 was always found in the NRMP, even though the existence of couples can make the set of stable
 matchings empty.39 In the school choice setting with indifferences, Aytek Erdil and Ergin (2008)
 propose a new procedure to construct a student-optimal matching. While there are potentially
 large efficiency gains from their procedure (Abdulkadiroglu et al., forthcoming), in their mecha
 nism, it is not a dominant strategy for students to reveal their preferences truthfully. Evaluating

 38 Note the difference between this mechanism and the SOSM. At each step of the Boston mechanism, students
 who are not rejected are guaranteed positions; the matches of these students and colleges are permanent rather than
 temporary, unlike in the SOSM.

 39 To ensure the existence of stable matchings with couples, we need restrictive assumptions on preferences of
 couples (Bettina Klaus and Klijn 2005). Kojima (2007a) develops an algorithm to find stable matchings with couples
 without imposing assumptions on preferences that might be a first step to investigate this issue in large markets.

This content downloaded from 
�����������130.233.35.118 on Tue, 14 Nov 2023 09:05:14 +00:00����������� 

All use subject to https://about.jstor.org/terms
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 incentive properties of this new procedure in large markets may be an interesting direction for
 future research.

 As market design tackles more complex environments, it will be harder to obtain finite mar
 ket results on the properties of certain mechanisms. The current paper explores an alternative
 approach, which is based on a large market assumption. Since many markets of interest can be
 modeled as large markets, explicitly analyzing the limit properties will be a useful approach to
 guide policymakers and help evaluate designs in these environments.
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