The exam of Principles of Physical Chemistry (CHEM-C1230) at 11.12.2023. has been corrected. There is an Excel file in the MyCourses which has all the points (also the exercises and quiz). Please check the points.

I will add the marks to Sisu after few days. The next exam is 22.1.2024. form 13:00-17:00. The registration is open in Sisu. The Jan exam is a remote exam.

The exam weight was 70%, the exercise 25% and the quiz 5%.

The point score is below.

lowest

points

1	50
2	60
3	70
4	80
5	90

Correction notes 11.12. exam

1) Iron $\mathrm{Fe}(\mathrm{s})$ oxides quite easily to $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$. Which is more exothermic at room temperature the oxidation with gas phase water $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ or with $\mathrm{O}_{2}(\mathrm{~g})$.
2 p. reaction equations
2 p. how to compute the reaction enthalpy, where you got the data. Having only equations is not enough.
1 p. correct calculation of reaction enthalpy.
1 p. correct conclusion Note: comparison needs to be made on same amount of $\mathrm{Fe}_{2} \mathrm{O}_{3}$.
2) Explain how the constant pressure calorimeter works.

1 p. A picture and general explanations
1 p. you observe temperature change
1 p. you measure heat change -> enthalpy and heat capacity
1 p. calibration -> you need the heat capacity of the calorimeter
2 p. correct calculations of the heat capacity of the calorimeter
3) Table salt $\mathrm{NaCl}(\mathrm{s})$ dissolves quite easily to water

1 p. reaction enthalpy
1 p. reaction gibbs energy
2 p. correct conclusion for heating and spontaneity
2 p. the calculation for KCl and correct conclusion
4) Fugacity and fugacity coefficient

1 p. fugacity is similar to pressure
1 p . definition of fugacity coefficient
1 p. the fugacity (or real pressure) estimation of the gases at 200 atm.
1 p. ammonia synthesis reaction equation and equilibrium constant (K)
1 p . estimation of the K using fugacities
1 p . general quality of the aswer
5) The phase changes can be investigated using either $\mathrm{P}-\mathrm{T}$ or $\mathrm{P}-\mathrm{V}$ diagram

1 p. pressure need to be higher than P (triple point) and lower than P (critical)
1 p. volume change in solid and liquid when temp increase
1 p. volume change at melting point,
1 p . co-exist of solid and liquid.
1 p . volume change at boiling point, co-exist of liquid and gas
1 p. large change in liquid gas transition. in gas $V=n R T / p$
6) Explain the reaction rate and rate constant of a model reaction

2 p . what are reaction rate and rate constant, understanding the reaction order.
1 p . the unit of reaction rate and rate constant.
1 p. general equilibrium constant, $a A+b B<->c C+d D$ and $A+B<->C+D$ reactions
1 p. At equilibrium forward and backward reactions are equal
1 p. relation of K, k (forw), and k (backw)

