Problem 10.1: ADMM for Stochastic Linear Optimization Problems

Consider the following two-stage stochastic linear optimization problem

$$
\zeta = \min_{x} \left\{ c^{\top} x + \mathcal{Q}(x) : x \in X \right\},\tag{1}
$$

with the variables $x \in \mathbb{R}^{n_x}$ and known first-stage costs $c \in \mathbb{R}^{n_x}$. The set X consists of linear constraints on the variables x. The function $\mathcal{Q}: \mathbb{R}^{n_x} \to \mathbb{R}$ is the expected recourse value

$$
\mathcal{Q}(x) = \mathbf{E}_{\xi} \left[\min_{y} \left\{ q(\xi)^{\top} y : W(\xi) y = h(\xi) - T(\xi)x, \ y \in Y(\xi) \right\} \right]
$$
(2)

with variables $y \in \mathbb{R}^{n_y}$. Values of the vectors $q(\xi) \in \mathbb{R}^{n_y}, h(\xi) \in \mathbb{R}^n$; matrices $W(\xi) \in \mathbb{R}^{n \times n_y}$, $T(\xi) \in \mathbb{R}^{n \times n_x}$; and the set $Y(\xi)$ all depend on realizations of a random variable ξ .

Suppose that ξ is associated with a discrete distribution indexed by a finite set S , consisting of realizations $\xi_1, \ldots, \xi_{|S|}$, corresponding to realization probabilities $p_1, \ldots, p_{|S|}$. Each realization ξ_s of ξ is called a *scenario* and encodes realizations observed by the random elements

$$
(q(\xi_s), h(\xi_s), W(\xi_s), T(\xi_s), Y(\xi_s))
$$

To simplify notation, we refer to this collection of random elements respectively as

$$
(q_s, h_s, W_s, T_s, Y_s)
$$

For each scenario $s \in S$, the set Y_s consists of linear constraints on the variables $y_s \in \mathbb{R}^{n_y}$. We can reformulate problem [\(1\)](#page-0-0) as an equivalent deterministic problem

$$
\zeta = \min_{x,y} \left\{ c^\top x + \sum_{s \in \mathcal{S}} p_s q_s^\top y_s : (x, y_s) \in K_s, \ \forall s \in S \right\},\tag{3}
$$

where

$$
K_s = \{(x, y_s) : W_s y_s = h_s - T_s x, \ x \in X, y_s \in Y_s \}.
$$

Problem [\(3\)](#page-0-1) has a decomposable structure that can be exploited. To induce this structure, let us introduce scenario-dependent copy variables x_s of the first-stage variable x for each scenario $s \in \mathcal{S}$. Using these copy variables, we can reformulate [\(3\)](#page-0-1) as

$$
\zeta = \min_{x,y,z} \left\{ \sum_{s \in \mathcal{S}} p_s(c^\top x_s + q_s^\top y_s) : (x_s, y_s) \in K_s, x_s = z, \ \forall s \in \mathcal{S}, z \in \mathbb{R}^{n_x} \right\}.
$$
 (4)

The variable $z \in \mathbb{R}^{n_x}$ is a common global variable, and the constraints $x_s = z$ for all $s \in \mathcal{S}$ enforce nonanticipativity for the first-stage decisions: all first-stage decisions x_s must be the same (z) for each scenario $s \in \mathcal{S}$ in the final solution.

Relaxing the nonanticipativity constraints $x_s = z$ for all $s \in S$ in [\(4\)](#page-0-2) in Lagrangian fashion yields the following augmented Lagrangian dual function

$$
\phi(\mu) = \min_{x,y,z} \sum_{s \in \mathcal{S}} \left[p_s(c^{\top} x_s + q_s^{\top} y_s) + \mu_s^{\top} (x_s - z) + p_s \frac{\rho}{2} ||x_s - z||_2^2 \right] \tag{5}
$$

subject to:
$$
(x_s, y_s) \in K_s, \ \forall s \in \mathcal{S}
$$
 (6)

By defining $v_s = \mu_s / p_s$ for all $s \in \mathcal{S}$, we can rewrite $(5) - (6)$ $(5) - (6)$ $(5) - (6)$ as

$$
\phi(v) = \min_{x,y,z} \sum_{s \in \mathcal{S}} p_s L_s^{\rho}(x_s, y_s, z, v_s)
$$
\n⁽⁷⁾

$$
subject to: (x_s, y_s) \in K_s, \ \forall s \in \mathcal{S}
$$
\n
$$
(8)
$$

where $L_s^{\rho}(x_s, y_s, z, v_s)$, defined for each $s \in S$, is the *augmented Lagrangian*

$$
L_s^{\rho}(x_s, y_s, z, v_s) = c^{\top} x_s + q_s^{\top} y_s + v_s^{\top} (x_s - z) + \frac{\rho}{2} ||x_s - z||_2^2
$$
\n(9)

Derive the ADMM iterations for solving the problem $(7) - (8)$ $(7) - (8)$ $(7) - (8)$ in a distributed fashion for each scenario $s \in \mathcal{S}$ separately.