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Problem 10.1: ADMM for Stochastic Linear Optimization Problems

Consider the following two-stage stochastic linear optimization problem

ζ = min.
x

{
c⊤x+Q(x) : x ∈ X

}
, (1)

with the variables x ∈ Rnx and known first-stage costs c ∈ Rnx . The set X consists of linear
constraints on the variables x. The function Q : Rnx → R is the expected recourse value

Q(x) = Eξ

[
min.

y

{
q(ξ)⊤y : W (ξ)y = h(ξ)− T (ξ)x, y ∈ Y (ξ)

}]
(2)

with variables y ∈ Rny . Values of the vectors q(ξ) ∈ Rny , h(ξ) ∈ Rn; matrices W (ξ) ∈ Rn×ny ,
T (ξ) ∈ Rn×nx ; and the set Y (ξ) all depend on realizations of a random variable ξ.

Suppose that ξ is associated with a discrete distribution indexed by a finite set S, consisting of
realizations ξ1, . . . , ξ|S|, corresponding to realization probabilities p1, . . . , p|S|. Each realization ξs
of ξ is called a scenario and encodes realizations observed by the random elements

(q(ξs), h(ξs),W (ξs), T (ξs), Y (ξs))

To simplify notation, we refer to this collection of random elements respectively as

(qs, hs,Ws, Ts, Ys)

For each scenario s ∈ S, the set Ys consists of linear constraints on the variables ys ∈ Rny . We can
reformulate problem (1) as an equivalent deterministic problem

ζ = min.
x,y

{
c⊤x+

∑
s∈S

psq
⊤
s ys : (x, ys) ∈ Ks, ∀s ∈ S

}
, (3)

where
Ks = {(x, ys) : Wsys = hs − Tsx, x ∈ X, ys ∈ Ys} .

Problem (3) has a decomposable structure that can be exploited. To induce this structure, let us
introduce scenario-dependent copy variables xs of the first-stage variable x for each scenario s ∈ S.
Using these copy variables, we can reformulate (3) as

ζ = min.
x,y,z

{∑
s∈S

ps(c
⊤xs + q⊤s ys) : (xs, ys) ∈ Ks, xs = z, ∀s ∈ S, z ∈ Rnx

}
. (4)

The variable z ∈ Rnx is a common global variable, and the constraints xs = z for all s ∈ S enforce
nonanticipativity for the first-stage decisions: all first-stage decisions xs must be the same (z) for
each scenario s ∈ S in the final solution.

Relaxing the nonanticipativity constraints xs = z for all s ∈ S in (4) in Lagrangian fashion yields
the following augmented Lagrangian dual function

ϕ(µ) = min.
x,y,z

∑
s∈S

[
ps(c

⊤xs + q⊤s ys) + µ⊤
s (xs − z) + ps

ρ

2
||xs − z||22

]
(5)

subject to: (xs, ys) ∈ Ks, ∀s ∈ S (6)

By defining vs = µs/ps for all s ∈ S, we can rewrite (5) – (6) as

ϕ(v) = min.
x,y,z

∑
s∈S

psL
ρ
s(xs, ys, z, vs) (7)

subject to: (xs, ys) ∈ Ks, ∀s ∈ S (8)
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where Lρ
s(xs, ys, z, vs), defined for each s ∈ S, is the augmented Lagrangian

Lρ
s(xs, ys, z, vs) = c⊤xs + q⊤s ys + v⊤s (xs − z) +

ρ

2
||xs − z||22 (9)

Derive the ADMM iterations for solving the problem (7) – (8) in a distributed fashion for each
scenario s ∈ S separately.
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