Problem 10.1: ADMM for Stochastic Linear Optimization Problems

Consider the following two-stage stochastic linear optimization problem

$$
\zeta = \min_{x} \left\{ c^{\top} x + \mathcal{Q}(x) : x \in X \right\},\tag{1}
$$

with the variables $x \in \mathbb{R}^{n_x}$ and known first-stage costs $c \in \mathbb{R}^{n_x}$. The set X consists of linear constraints on the variables x. The function $\mathcal{Q}: \mathbb{R}^{n_x} \to \mathbb{R}$ is the expected recourse value

$$
\mathcal{Q}(x) = \mathbf{E}_{\xi} \left[\min_{y} \left\{ q(\xi)^{\top} y : W(\xi) y = h(\xi) - T(\xi)x, \ y \in Y(\xi) \right\} \right] \tag{2}
$$

with variables $y \in \mathbb{R}^{n_y}$. Values of the vectors $q(\xi) \in \mathbb{R}^{n_y}, h(\xi) \in \mathbb{R}^n$; matrices $W(\xi) \in \mathbb{R}^{n \times n_y}$, $T(\xi) \in \mathbb{R}^{n \times n_x}$; and the set $Y(\xi)$ all depend on realizations of a random variable ξ .

Suppose that ξ is associated with a discrete distribution indexed by a finite set S , consisting of realizations $\xi_1, \ldots, \xi_{|S|}$, corresponding to realization probabilities $p_1, \ldots, p_{|S|}$. Each realization ξ_s of ξ is called a *scenario* and encodes realizations observed by the random elements

$$
(q(\xi_s), h(\xi_s), W(\xi_s), T(\xi_s), Y(\xi_s))
$$

To simplify notation, we refer to this collection of random elements respectively as

$$
(q_s, h_s, W_s, T_s, Y_s)
$$

For each scenario $s \in S$, the set Y_s consists of linear constraints on the variables $y_s \in \mathbb{R}^{n_y}$. We can reformulate problem [\(1\)](#page-0-0) as an equivalent deterministic problem

$$
\zeta = \min_{x,y} \left\{ c^\top x + \sum_{s \in \mathcal{S}} p_s q_s^\top y_s : (x, y_s) \in K_s, \ \forall s \in S \right\},\tag{3}
$$

where

$$
K_s = \{(x, y_s) : W_s y_s = h_s - T_s x, \ x \in X, y_s \in Y_s \}.
$$

Problem [\(3\)](#page-0-1) has a decomposable structure that can be exploited. To induce this structure, let us introduce scenario-dependent copy variables x_s of the first-stage variable x for each scenario $s \in \mathcal{S}$. Using these copy variables, we can reformulate [\(3\)](#page-0-1) as

$$
\zeta = \min_{x,y,z} \left\{ \sum_{s \in \mathcal{S}} p_s(c^\top x_s + q_s^\top y_s) : (x_s, y_s) \in K_s, x_s = z, \ \forall s \in \mathcal{S}, z \in \mathbb{R}^{n_x} \right\}.
$$
 (4)

The variable $z \in \mathbb{R}^{n_x}$ is a common global variable, and the constraints $x_s = z$ for all $s \in \mathcal{S}$ enforce nonanticipativity for the first-stage decisions: all first-stage decisions x_s must be the same (z) for each scenario $s \in \mathcal{S}$ in the final solution.

Relaxing the nonanticipativity constraints $x_s = z$ for all $s \in S$ in [\(4\)](#page-0-2) in Lagrangian fashion yields the following augmented Lagrangian dual function

$$
\phi(\mu) = \min_{x,y,z} \sum_{s \in \mathcal{S}} \left[p_s(c^{\top} x_s + q_s^{\top} y_s) + \mu_s^{\top} (x_s - z) + p_s \frac{\rho}{2} ||x_s - z||_2^2 \right] \tag{5}
$$

subject to:
$$
(x_s, y_s) \in K_s, \ \forall s \in \mathcal{S}
$$
 (6)

By defining $v_s = \mu_s / p_s$ for all $s \in \mathcal{S}$, we can rewrite $(5) - (6)$ $(5) - (6)$ $(5) - (6)$ as

$$
\phi(v) = \min_{x,y,z} \sum_{s \in \mathcal{S}} p_s L_s^{\rho}(x_s, y_s, z, v_s)
$$
\n⁽⁷⁾

$$
subject to: (x_s, y_s) \in K_s, \ \forall s \in \mathcal{S}
$$
\n
$$
(8)
$$

where $L_s^{\rho}(x_s, y_s, z, v_s)$, defined for each $s \in S$, is the *augmented Lagrangian*

$$
L_s^{\rho}(x_s, y_s, z, v_s) = c^{\top} x_s + q_s^{\top} y_s + v_s^{\top} (x_s - z) + \frac{\rho}{2} ||x_s - z||_2^2
$$
\n(9)

Derive the ADMM iterations for solving the problem $(7) - (8)$ $(7) - (8)$ $(7) - (8)$ in a distributed fashion for each scenario $s \in \mathcal{S}$ separately.

Solution.

Since z is unconstrained in $(7) - (8)$ $(7) - (8)$ $(7) - (8)$, the value of $\phi(v)$ can be made arbitrarily small unless

$$
v_s^\top z = 0, \quad \text{ for all } s \in \mathcal{S} \tag{10}
$$

Therefore, to ensure that $\phi(v) > -\infty$, it is necessary that the condition [\(10\)](#page-1-0) holds either by assumption or construction. Thus, the term $v_s^{\top} z$ vanishes from [\(9\)](#page-1-1) for all $s \in S$.

Setting $v_s^{\top} z = 0$, for all $s \in S$ according to [\(10\)](#page-1-0), we can rewrite [\(9\)](#page-1-1) as

$$
L_s^{\rho}(x_s, y_s, z, v_s) = (c + v_s)^{\top} x_s + q_s^{\top} y_s + \frac{\rho}{2} ||x_s - z||_2^2.
$$
 (11)

In this case, the ADMM update step of (x_s, y_s) for all $s \in S$ is of the form

$$
(x_s^{k+1}, y_s^{k+1}) = \underset{(x_s, y_s) \in K_s}{\text{argmin}} L_s^{\rho}(x_s, y_s, z^k, v_s^k)
$$

=
$$
\underset{(x_s, y_s) \in K_s}{\text{argmin}} \left\{ (c + v_s^k)^{\top} x_s + q_s^{\top} y_s + \frac{\rho}{2} ||x_s - z^k||_2^2 \right\},
$$
 (12)

which can be done in parallel for each scenario $s \in S$. Thus, computing (x_s^{k+1}, y_s^{k+1}) for each $s \in S$ amounts to solving a quadratic problem with linear constraints defined in $(x_s, y_s) \in K_s$. After updating x_s^{k+1} and y_s^{k+1} for each scenario $s \in S$, the z-update is of the form

$$
z^{k+1} = \underset{z}{\operatorname{argmin}} \sum_{s \in S} p_s L_s^{\rho}(x_s^{k+1}, y_s^{k+1}, z, v_s^k)
$$

=
$$
\underset{z}{\operatorname{argmin}} \sum_{s \in S} p_s \left[(c + v_s^k)^{\top} x_s^{k+1} + q_s^{\top} y_s^{k+1} + \frac{\rho}{2} ||x_s^{k+1} - z||_2^2 \right]
$$
(13)

Taking the gradient of (13) with regard to z and setting it to zero, we get

$$
\sum_{s \in S} p_s \rho(x_s^{k+1} - z) = 0
$$
\n
$$
\sum_{s \in S} p_s x_s^{k+1} - z \sum_{s \in S} p_s = 0
$$
\n(14)

since $\sum_{s \in S} p_s = 1$, we get the following z-update from [\(14\)](#page-1-3):

$$
z^{k+1} = \sum_{s \in S} p_s x_s^{k+1}
$$
 (15)

Finally, the dual variables v_s are updated separately for each scenario $s \in S$ using Gradient Descent with a step size ρ as

$$
v_s^{k+1} = v_s^k + \rho(x_s^{k+1} - z^{k+1}).
$$
\n(16)

These updates can obviously be computed in parallel for each scenario $s \in S$.

To recap, we first update (x_s^{k+1}, y_s^{k+1}) for each scenario $s \in S$ separately (which can be done in parallel) by using [\(12\)](#page-1-4). Each of these updates corresponds to solving a quadratic problem with linear constraints that can be solved, for instance, using the Ipopt solver in JuMP. Then, we update z^{k+1} simply by using [\(15\)](#page-1-5). Finally, we update v_s^{k+1} for each scenario $s \in S$ using [\(16\)](#page-1-6). These v_s^{k+1} updates for all $s \in S$ can also be computed in parallel.

The squared primal residual norm in this case is $p_s||r_s^{k+1}||_2^2 = p_s||x_s^{k+1} - z^{k+1}||_2^2$ for all $s \in S$ and the squared dual residual norm becomes $p_s||s^{k+1}||_2^2 = p_s||z^{k+1} - z^k||_2^2$. Summing these two yields

$$
\sum_{s \in S} p_s \left[||x_s^{k+1} - z^{k+1}||_2^2 + ||z^{k+1} - z^k||_2^2 \right]
$$
\n
$$
= \sum_{s \in S} p_s \left[(x_s^{k+1} - z^{k+1})^\top (x_s^{k+1} - z^{k+1}) + (z^{k+1} - z^k)^\top (z^{k+1} - z^k) \right]
$$
\n
$$
= \sum_{s \in S} p_s \left[||x_s^{k+1}||_2^2 - 2(x_s^{k+1})^\top z^{k+1} + ||z^{k+1}||_2^2 + ||z^{k+1}||_2^2 - 2(z^{k+1})^\top z^k + ||z^k||_2^2 \right]
$$
\n
$$
= \sum_{s \in S} p_s \left[||x_s^{k+1}||_2^2 - 2||z^{k+1}||_2^2 + 2||z^{k+1}||_2^2 - 2(z^{k+1})^\top z^k + ||z^k||_2^2 \right]
$$
\n
$$
= \sum_{s \in S} p_s \left[||x_s^{k+1}||_2^2 - 2(x_s^{k+1})^\top z^k + ||z^k||_2^2 \right]
$$
\n
$$
= \sum_{s \in S} p_s ||x_s^{k+1} - z^k||_2^2
$$

However, in Assignment 2, we will use as a stopping criterion the following non-squared sum of primal and dual residuals terms multiplied by ρ , which can make convergence smoother:

$$
\sum_{s \in S} p_s \rho ||x_s^{k+1} - z^k||_2 \tag{17}
$$

The sum terms in the stopping criterion [\(17\)](#page-2-0) can be computed in parallel for each $s \in S$ after updating x_s^{k+1} . This is detailed in skeleton code of Assignment 2. The algorithm stops when

$$
\sum_{s\in S}p_s\rho||x_s^{k+1}-z^k||_2<\epsilon
$$

for some pre-defined tolerance $\epsilon > 0$.