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Problem 10.1: ADMM for Stochastic Linear Optimization Problems

Consider the following two-stage stochastic linear optimization problem
¢(=min. {c'2+Q(z):z€ X}, (1)
xX

with the variables x € R™ and known first-stage costs ¢ € R™. The set X consists of linear
constraints on the variables x. The function Q : R™* — R is the expected recourse value

Qz) = E¢ min. {9 Ty Wy =h(&) -T(E)z, y e Y(6)} (2)
with variables y € R™. Values of the vectors ¢(¢) € R, h(§) € R™; matrices W () € R"*"v,

T(&) € R"*"=; and the set Y(&) all depend on realizations of a random variable &.

Suppose that £ is associated with a discrete distribution indexed by a finite set S, consisting of
realizations &1, ..., &), corresponding to realization probabilities pi,...,ps|.- Each realization s
of £ is called a scenario and encodes realizations observed by the random elements

(q(€s), h(&s), W (&), T(&s), Y (&)

To simplify notation, we refer to this collection of random elements respectively as
(qS? hS7 Wsa T57 }/S)

For each scenario s € S, the set Y consists of linear constraints on the variables y, € R™v. We can
reformulate problem (1) as an equivalent deterministic problem

¢ = min. {cTz + Zpsq;rys s (x,ys) € K, Vs € S} , (3)

x,y
seS

where
Ky = {(1.73/8) : Wsys =hs —Tz, z € X7y5 € Y;}

Problem (3) has a decomposable structure that can be exploited. To induce this structure, let us
introduce scenario-dependent copy variables x4 of the first-stage variable x for each scenario s € S.
Using these copy variables, we can reformulate (3) as

¢ = min. {Zps(c—rxs + 4 ys) : (xe,ys) € Kgyzg =2, Vs €S,z € R"l} . (4)

T,Y,z
e seS

The variable z € R™ is a common global variable, and the constraints x; = z for all s € S enforce
nonanticipativity for the first-stage decisions: all first-stage decisions x5 must be the same (z) for
each scenario s € S in the final solution.

Relaxing the nonanticipativity constraints zs = z for all s € § in (4) in Lagrangian fashion yields
the following augmented Lagrangian dual function

o) = min. 3 [p(ews +aTys) + 1 (25 — 2) + Pz, — 2113 (5)
Ty seS 2
subject to: (zs,ys) € K, Vs €S (6)

By defining vy = ps/ps for all s € S, we can rewrite (5) — (6) as

(]5(’0) = min' Zpng(xmySvZa/Us) (7)
oz s€S
subject to: (zs,ys) € K, Vs € S (8)
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where L2 (x4, ys, 2,vs), defined for each s € S, is the augmented Lagrangian

T

p
LY(@sr s, 2,0s) = ¢ w5 + 4] ys + 0] (2 = 2) + G lws = 2113 9)

Derive the ADMM iterations for solving the problem (7) — (8) in a distributed fashion for each
scenario s € S separately.
Solution.

Since z is unconstrained in (7) — (8), the value of ¢(v) can be made arbitrarily small unless
vgz=0, forallscS (10)

Therefore, to ensure that ¢(v) > —oo, it is necessary that the condition (10) holds either by

assumption or construction. Thus, the term v/ z vanishes from (9) for all s € S.

Setting vJ z = 0, for all s € S according to (10), we can rewrite (9) as
L (a7 0) = (e 02) T a2l — 2113 ()

In this case, the ADMM update step of (xs,ys) for all s € S is of the form

(x§+1ay§+l): argmin L?(ISay&Zkaf)
(fmys)GKs
= argmin {(c+v5) 7o, +qly, + Sllas — 2B}, (12)
(zs,y5) €K

which can be done in parallel for each scenario s € S. Thus, computing (z%+1 y**1) for each s € S
amounts to solving a quadratic problem with linear constraints defined in (z,,ys) € K,. After

updating z%*1 and y**! for each scenario s € S, the z—update is of the form

2 = argmin Y " p Lo(ah T g 2, 0F)

S ’Ys
z

SES
. P
— argminy_p, |(c+v5) ok 4 gyttt + Ljjaktt — 23] (13)
? seS

Taking the gradient of (13) with regard to z and setting it to zero, we get

Zpsp(x§+1 —2z)=0

ses
Zpsxfﬂ - zZpS =0 (14)
seS seS

since ) ¢ Ps = 1, we get the following z—update from (14):

A2 Y ke (15)
ses

Finally, the dual variables v, are updated separately for each scenario s € S using Gradient Descent
with a step size p as

of T = of 4 p(ah T - M), (16)

These updates can obviously be computed in parallel for each scenario s € S.

To recap, we first update (z¥T1 y*+1) for each scenario s € S separately (which can be done

in parallel) by using (12). Each of these updates corresponds to solving a quadratic problem
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with linear constraints that can be solved, for instance, using the Ipopt solver in JuMP. Then, we
update zF*1 simply by using (15). Finally, we update v**! for each scenario s € S using (16).
These v**1 updates for all s € S can also be computed in parallel.

The squared primal residual norm in this case is pg|[r5+1|[3 = p||zF+! — 2512 for all s € S and

the squared dual residual norm becomes ps|[s**1||3 = ps||zFT? — 2¥||3. Summing these two yields

> ps [laf = 2 4 | — 2R ]

ses

— Zps [(xk-i-l _ Zk+1)T(.%‘k+1 _ Zk+1> + (zk—H _ Zk)'l'(zk—H _ Zkﬂ

S S

ses

= oo [l S — 20T T 4 M (125 - 2025 TR 4 (120 13]
seSs

= oo [l = 20125 + 2012515 - 265 T2+ [12415]
seS

= oo [l — 20 T2+ []24)15]
seS

= psllzbtt =243
ses

However, in Assignment 2, we will use as a stopping criterion the following non-squared sum of
primal and dual residuals terms multiplied by p, which can make convergence smoother:

> o pepllaltt = 2F)s (17)
seSs

The sum terms in the stopping criterion (17) can be computed in parallel for each s € S after
updating %1, This is detailed in skeleton code of Assignment 2. The algorithm stops when

s
D opspllaltt =M <€
seS

for some pre-defined tolerance € > 0.



