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Problem 10.1: ADMM for Stochastic Linear Optimization Problems

Consider the following two-stage stochastic linear optimization problem

ζ = min.
x

{
c⊤x+Q(x) : x ∈ X

}
, (1)

with the variables x ∈ Rnx and known first-stage costs c ∈ Rnx . The set X consists of linear
constraints on the variables x. The function Q : Rnx → R is the expected recourse value

Q(x) = Eξ

[
min.

y

{
q(ξ)⊤y : W (ξ)y = h(ξ)− T (ξ)x, y ∈ Y (ξ)

}]
(2)

with variables y ∈ Rny . Values of the vectors q(ξ) ∈ Rny , h(ξ) ∈ Rn; matrices W (ξ) ∈ Rn×ny ,
T (ξ) ∈ Rn×nx ; and the set Y (ξ) all depend on realizations of a random variable ξ.

Suppose that ξ is associated with a discrete distribution indexed by a finite set S, consisting of
realizations ξ1, . . . , ξ|S|, corresponding to realization probabilities p1, . . . , p|S|. Each realization ξs
of ξ is called a scenario and encodes realizations observed by the random elements

(q(ξs), h(ξs),W (ξs), T (ξs), Y (ξs))

To simplify notation, we refer to this collection of random elements respectively as

(qs, hs,Ws, Ts, Ys)

For each scenario s ∈ S, the set Ys consists of linear constraints on the variables ys ∈ Rny . We can
reformulate problem (1) as an equivalent deterministic problem

ζ = min.
x,y

{
c⊤x+

∑
s∈S

psq
⊤
s ys : (x, ys) ∈ Ks, ∀s ∈ S

}
, (3)

where
Ks = {(x, ys) : Wsys = hs − Tsx, x ∈ X, ys ∈ Ys} .

Problem (3) has a decomposable structure that can be exploited. To induce this structure, let us
introduce scenario-dependent copy variables xs of the first-stage variable x for each scenario s ∈ S.
Using these copy variables, we can reformulate (3) as

ζ = min.
x,y,z

{∑
s∈S

ps(c
⊤xs + q⊤s ys) : (xs, ys) ∈ Ks, xs = z, ∀s ∈ S, z ∈ Rnx

}
. (4)

The variable z ∈ Rnx is a common global variable, and the constraints xs = z for all s ∈ S enforce
nonanticipativity for the first-stage decisions: all first-stage decisions xs must be the same (z) for
each scenario s ∈ S in the final solution.

Relaxing the nonanticipativity constraints xs = z for all s ∈ S in (4) in Lagrangian fashion yields
the following augmented Lagrangian dual function

ϕ(µ) = min.
x,y,z

∑
s∈S

[
ps(c

⊤xs + q⊤s ys) + µ⊤
s (xs − z) + ps

ρ

2
||xs − z||22

]
(5)

subject to: (xs, ys) ∈ Ks, ∀s ∈ S (6)

By defining vs = µs/ps for all s ∈ S, we can rewrite (5) – (6) as

ϕ(v) = min.
x,y,z

∑
s∈S

psL
ρ
s(xs, ys, z, vs) (7)

subject to: (xs, ys) ∈ Ks, ∀s ∈ S (8)
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where Lρ
s(xs, ys, z, vs), defined for each s ∈ S, is the augmented Lagrangian

Lρ
s(xs, ys, z, vs) = c⊤xs + q⊤s ys + v⊤s (xs − z) +

ρ

2
||xs − z||22 (9)

Derive the ADMM iterations for solving the problem (7) – (8) in a distributed fashion for each
scenario s ∈ S separately.

Solution.

Since z is unconstrained in (7) – (8), the value of ϕ(v) can be made arbitrarily small unless

v⊤s z = 0, for all s ∈ S (10)

Therefore, to ensure that ϕ(v) > −∞, it is necessary that the condition (10) holds either by
assumption or construction. Thus, the term v⊤s z vanishes from (9) for all s ∈ S.

Setting v⊤s z = 0, for all s ∈ S according to (10), we can rewrite (9) as

Lρ
s(xs, ys, z, vs) = (c+ vs)

⊤xs + q⊤s ys +
ρ

2
||xs − z||22. (11)

In this case, the ADMM update step of (xs, ys) for all s ∈ S is of the form

(xk+1
s , yk+1

s ) = argmin
(xs,ys)∈Ks

Lρ
s(xs, ys, z

k, vks )

= argmin
(xs,ys)∈Ks

{
(c+ vks )

⊤xs + q⊤s ys +
ρ

2
||xs − zk||22

}
, (12)

which can be done in parallel for each scenario s ∈ S. Thus, computing (xk+1
s , yk+1

s ) for each s ∈ S
amounts to solving a quadratic problem with linear constraints defined in (xs, ys) ∈ Ks. After
updating xk+1

s and yk+1
s for each scenario s ∈ S, the z−update is of the form

zk+1 = argmin
z

∑
s∈S

psL
ρ
s(x

k+1
s , yk+1

s , z, vks )

= argmin
z

∑
s∈S

ps

[
(c+ vks )

⊤xk+1
s + q⊤s y

k+1
s +

ρ

2
||xk+1

s − z||22
]

(13)

Taking the gradient of (13) with regard to z and setting it to zero, we get∑
s∈S

psρ(x
k+1
s − z) = 0∑

s∈S

psx
k+1
s − z

∑
s∈S

ps = 0 (14)

since
∑

s∈S ps = 1, we get the following z−update from (14):

zk+1 =
∑
s∈S

psx
k+1
s (15)

Finally, the dual variables vs are updated separately for each scenario s ∈ S using Gradient Descent
with a step size ρ as

vk+1
s = vks + ρ(xk+1

s − zk+1). (16)

These updates can obviously be computed in parallel for each scenario s ∈ S.

To recap, we first update (xk+1
s , yk+1

s ) for each scenario s ∈ S separately (which can be done
in parallel) by using (12). Each of these updates corresponds to solving a quadratic problem
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with linear constraints that can be solved, for instance, using the Ipopt solver in JuMP. Then, we
update zk+1 simply by using (15). Finally, we update vk+1

s for each scenario s ∈ S using (16).
These vk+1

s updates for all s ∈ S can also be computed in parallel.

The squared primal residual norm in this case is ps||rk+1
s ||22 = ps||xk+1

s − zk+1||22 for all s ∈ S and
the squared dual residual norm becomes ps||sk+1||22 = ps||zk+1 − zk||22. Summing these two yields∑

s∈S

ps
[
||xk+1

s − zk+1||22 + ||zk+1 − zk||22
]

=
∑
s∈S

ps
[
(xk+1

s − zk+1)⊤(xk+1
s − zk+1) + (zk+1 − zk)⊤(zk+1 − zk)

]
=

∑
s∈S

ps
[
||xk+1

s ||22 − 2(xk+1
s )⊤zk+1 + ||zk+1||22 + ||zk+1||22 − 2(zk+1)⊤zk + ||zk||22

]
=

∑
s∈S

ps
[
||xk+1

s ||22 − 2||zk+1||22 + 2||zk+1||22 − 2(zk+1)⊤zk + ||zk||22
]

=
∑
s∈S

ps
[
||xk+1

s ||22 − 2(xk+1
s )⊤zk + ||zk||22

]
=

∑
s∈S

ps||xk+1
s − zk||22

However, in Assignment 2, we will use as a stopping criterion the following non-squared sum of
primal and dual residuals terms multiplied by ρ, which can make convergence smoother:∑

s∈S

psρ||xk+1
s − zk||2 (17)

The sum terms in the stopping criterion (17) can be computed in parallel for each s ∈ S after
updating xk+1

s . This is detailed in skeleton code of Assignment 2. The algorithm stops when∑
s∈S

psρ||xk+1
s − zk||2 < ϵ

for some pre-defined tolerance ϵ > 0.
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