Exercise sheet 10
(D) Let (fn) be the sequence of functions
defined on [0,1] as follows:

$$f_n(t) = \begin{cases} 4n^2t & 0 \le t \le \frac{1}{2n} \\ 4n^-4n^2t & \frac{1}{2n} \le t \le \frac{1}{n} \\ 0 & \frac{1}{n} \le t \le 1 \end{cases}$$
Drow a growth of $f_n(t)$, chucke
thust him $f_n(x) = 0$, but

$$f_{n-1}(x) = 0, \text{ but}$$

$$f_{n-2}(x) = 0 \text{ we get that}$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

$$f_{n-2}(x) = 1 \text{ for } 0 = 1 \text{ for } 0 = 0$$

2) Verity that $2 \frac{z^n}{1+z^n}$ converges normally in |2|2| Also veritz that it diverges when |2|>1. (It is actually true that it diverges when |2|211 $\frac{|z| \ge 1}{2} \int \frac{|z|^n}{|z| \le 1 < 1} \frac{|z|^n}{|z|^n} = \frac{|z|^n}{|z|^n}$ $\leq \frac{|z|^{n}}{1-r^{n}} \leq \frac{r}{1-r^{n}} \leq Mr^{n}$ where $M = \frac{1}{1-r^{n}}$ Since rcl we see that $\sum_{n=0}^{\infty} \frac{z^n}{1+z^n}$ converges uniformly in $|z| \leq r$ by the Weicrstrass M-test. Therefore the series converges normality in |z| < 1. $|f_{1+2n}| \ge \frac{|z|^{n}}{|z|^{n}}|_{1+\frac{1}{2n}} = \frac{|z|^{n}}{|1+\frac{1}{2n}|} = \frac{|1+\frac{1}{2n}|}{|1+\frac{1}{2n}|} = 1$ and therefore the terms in 2 2h does not converge to zero and the series diverges (3) Let D be a bounded domain in the complex plane. Suppose that every function in a sequence (f_n) is antinuous on \overline{D} and analytic in D. Assume that this sequence anverges uniformly on 20, prove that it converges uniformly on D.

Solution: We use the Cauchy criterion. Let
$$\varepsilon > 0$$
.
Then there is an N so that
 $|f_k(z) - f_m(z)| < \varepsilon/a$ and $|g_k(z) - g_m(z)| < \varepsilon/z$.
When $k, m \ge N$.
Therefore
 $|f_k(z) + g_k(z) - f_m(z) - g_m(z)| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$
when $k, m \ge N$. This imply that $(f_n + g_n)$ converges
uniterally.
Assume $\sup (|f_n(z)| : z \in A) < c$ and
 $\sup (|g_n(z)| : z \in A) < c$.
Now choose N so that $|f_m(z) - f_k(z)| < \frac{\varepsilon}{2c}$
and $|g_m(z) - g_k(z)| < \frac{\varepsilon}{2c}$ when $m_1 k \ge N$.
Then $|f_m(z)g_m(z) - f_k(z)g_k(z)| =$
 $= |f_m(z)g_m(z) - f_k(z)g_m(z) + f_k(z)|g_m(z) - g_k(z)|$
 $\le |g_m(z)| |f_m(z) - f_k(z)| = \varepsilon$ when $m_1 k \ge N$.