Exercise sheet 9
(1) A function f is analytic in an annulus
D centered at a point zo, that is
D = { z c C ; a < 12-20165 }, where D < a < b < 6 and
z < C. Show that

$$\int_{|z-20|=r}^{|z-20|=s} f(z) dz$$
 where $r = \frac{1}{|z-20|=s}$
a < r < s < b, and $|z-20|=r$ and $|z-40|=s$
a < r < s < b, and $|z-20|=r$ and $|z-40|=s$
are positively oriented.
Solution: Let $\alpha(t) = z_0 + re^{it}$ and $\beta(t) = z_1 + se^{it}$
where $0 \le t < 2n$. Then $n(\alpha, \omega) = n(\beta, \omega)$ for
every $\omega \in C \setminus D$ (= 1 when $|\omega - 20| \le n$ and $= 0$)
where $|\omega - 20| \ge 0$
Therefore $T = (\alpha, -\beta)$ is thousdogous to zero
in D and Cauchy's theorem says that
 $D = \int_{0}^{1} \frac{f(z) dz}{f(z) dz} = \int_{0}^{1} \frac{f(z) dz}{f(z) dz}$
 $\sum_{|z-20|=r}^{1} \frac{f(z) dz}{z} = \int_{0}^{1} \frac{f(z$

b) Are the cycles
$$\sigma = (\alpha_1, -\delta)$$
 and $\tau = (\beta_1 \beta)$
homologous in $\mathbb{C} \setminus \overline{\Delta[0]_{\frac{1}{2}}}$?
c) Are the cycles $\sigma = (\alpha_1, \beta_1 \delta)$ and $\tau = (\delta_1 \delta_1, \beta)$
homologous in $\mathbb{C} \setminus 40\beta$
Solution:
a)
 $n(\alpha_1, 4i) = 0 = n(\alpha_1, 4i)$
 $n(\beta_1, 4i) = 0 = n(\beta_1, 4i)$
 $n(\beta_1, 4i) = 0 = n(\beta_1, 4i)$
 $n(\delta_1, 4i) = 0 = n(\beta_1, 4i)$
 $n(\delta_1, 4i) = 0 = n(\gamma_1, 2i)$
For example, $|4i| - (-1)| - \sqrt{4} + 1$
 >2
Therefore $n(\sigma_1, 4i) = n(\alpha_1 \lambda_1) + n(\beta_1 \lambda_1) + n(\beta_1 \lambda_2) = 0$
and similarly $n(\sigma_1, 4i) = 0$
 $\Rightarrow \sigma$ is homologous to zero in $\mathbb{C} \setminus 4\lambda_1, 4i$
b) For any point $\chi \in \overline{\Delta(0, 1/2)}$ we have
 $n(\alpha_1, 2) = 1$, $n(\beta_1, 2) = 0$, and $n(\delta_1, 2) = 1$
Therefore $n(\sigma_1, 2) = n(\alpha_1, 2) - n(\delta_1, 2) = 1 = 0$
and $\eta(\tau_1, 2) = 2n(\beta_1 2) = 0$
It follows that τ and τ are homologous in
 $\mathbb{C} \setminus \overline{\Delta(0, 1/2)}$.

C) We have
$$n(x_1,0) = 1$$
, $n(\beta,0) = 0$, and $n(x_1,0) = 1$.
Therefore $\sigma = (a_1, p_1, x)$ and $t = (x_1, x_1, \beta)$ are
homologorus in $C \cdot 10t$ since
 $n(\sigma_1,0) = n(a_1,0) + n(\beta_1,0) + n(\gamma_1,0) = 2 =$
 $= n(Y_1,0) + n(Y_1,0) + n(\beta_1,0) = n(t_1,0)$
(2) but $a(t) = e^{-it}$ and $\beta(t) = 3$ solt + i sint for
 $-\pi/2 \le t \le \pi/2$. Compute
 $\int \frac{16 \log(2)}{2(2-3)^2(2-4)} dz$
Solution:
 $1 = \frac{1}{3}$
The integrand $f(z) = \frac{16}{2(2-3)^2(z-4)}$ is analytic
on $C \setminus ((-\infty, 0) = 124 \ln 144)$
marked green in figure
Use partial fractions
 $\frac{16}{2(z-4)^2(z-4)} = \frac{A}{z} + \frac{B}{z-4} + \frac{C}{(z-2)^2} + \frac{D}{z-2} =$
 $= \frac{A(z-4)(z-3)^2 + Bz(z-2)^2 + Cz(z-4) + Dz(z-4)(z-2)}{2(z-2)^2(z-4)}$
 $= \frac{A(z-4)(z^2-3^2 + Bz(z^2-4y-1) + Cz(z-4) + Dz(z^2-4)(z-2)}{2(z-2)^2(z-4)}$

Check flows as leady
Thurchere
$$\begin{vmatrix} -16 \ A = 16 \\ 20A + 4B - 4C + 8D = 0 \\ -8A - 4B + C - 6D = 0 \\ A + B - D = 0 \\ \end{vmatrix}$$

We get $A \int \frac{\log(2)}{2} dz = 0$ since $n(p+a, 0) = 0$
and $B \int \frac{\log(2)}{2} dz = 0$ since $n(p+a, 14) = 0$
We have $n(p+a, 2) = 1$ so we calculate
 $C \int \frac{\log(2)}{(2-2)^2} dz$ and $D \int \frac{\log(2)}{2} dz$ using the
product $\frac{1}{2} \log(2) dz = D(2\pi i) \log(2) = D(2\pi i) \ln 2$
we get $D \int \frac{\log(2)}{2} dz = D(2\pi i) \log(2) = D(2\pi i) \ln 2$
and $j \sin e \frac{d}{dz} \log(2) = \frac{1}{z}$,
 $C \int \frac{\log(2)}{2} dz = C(2\pi i) \frac{1}{z} = C\pi i$
 $\beta = C\pi i$
So, if my calculations are correct, we get
 $\int \frac{16Log(2)}{2} dz = -4\pi i$

(1) Prove that
$$\lim_{r \to \infty} \int_{c-ir} \frac{1}{z \log(z)} dz = 0$$

when col. (Hint: (ansider
 $\int_{Y} \frac{1}{2\log(z)} dz$, where $Y(t) = c+ye^{it}$ for
 $-\frac{1}{2} \le t \le \frac{\pi}{2}$.)
Solution:
 $\frac{1}{z \log(z)}$
 $\frac{1}{z \log(z)}$
Notice that
 $\int_{Y} \frac{1}{z \log(z)} dz = \int_{Y} \frac{1}{z \log(z)} dz = \int_{Y} \frac{1}{z \log(z)} dz$
Notice that
 $\int_{Y} \frac{1}{z \log(z)} dz = \int_{Y} \frac{1}{z \log(z)} dz$
 $\frac{1}{z \log(z)} \frac{1}{z \log(z)} dz = \int_{Y} \frac{1}{z \log(z)} dz$
 $\frac{1}{z \log(z)} \frac{1}{z \log(z)} dz = \int_{Y} \frac{1}{z \log(z)} dz$
 $\frac{1}{z \log(z)} \frac{1}{z \log(z)} dz = 0.$