Exercise sheet 9
(1) A function f is analytic in an annulus D centered at a point z_{0}, that is
$D=\left\{z \in \mathbb{C} ; a<\left|z-z_{0}\right|<b\right\}$, where $0 \leqslant a<b \leqslant \infty$ and $z_{0} \in C$. Show that

$$
\int_{\left|z-z_{0}\right|=r} f(z) d z=\int_{\left|z-z_{0}\right|=s} f(z \mid d z \text { whenever }
$$

$a<r<s<b$, and $\left|z-z_{0}\right|=r$ and $\left|z-z_{0}\right|=s$ are positively oriented.
Solution: Let $\alpha(t)=z_{0}+r e^{i t}$ and $\beta(t)=z_{0}+s e^{i t}$ where $0 \leq t \leq 2 \pi$. Them $n(\alpha, \omega)=n(\beta, \omega)$ for every $\omega \in \mathbb{C} \left\lvert\, D\left(=\begin{array}{l}1 \text { whom }\left|\omega-z_{0}\right| \leq a \\ \text { when }\left|\omega-z_{0}\right| \geq b\end{array}\right.$ and $\left.=0\right)\right.$
Therefore $\sigma=(\alpha,-\beta)$ is homologous to zee in D and Cancly's Theorem says that

$$
\begin{align*}
& 0=\int_{\sigma} f(z) d z=\int_{\alpha} f(z) d z-\int_{\beta} f(z) d z \\
\Rightarrow & \int_{\left|z-z_{0}\right|=r} f(z) d z=\int_{\left|z-z_{0}\right| k s} f(z) d z
\end{align*}
$$

(3) Let $\alpha(t)=c^{i t}, \beta(t)=\frac{5}{3}+e^{i t}$, and $\gamma(t)=-1+2 e^{i t}$ for $0 \leq t \leq 2 \pi$.
a) Is the cycle $\sigma=(\alpha, \beta, \gamma)$ homologas to zero in $\mathbb{C} \backslash\{2 i,-2 i\}$?
b) Are the cycles $\sigma=(\alpha,-\gamma)$ and $\tau=(\beta, \beta)$ homologous in $\mathbb{C} \backslash \overline{\Delta\left(0, \frac{1}{2}\right)}$?
c) Ane the cycles $\sigma=(\alpha, \beta, \gamma)$ and $\tau=(\gamma, \gamma, \beta)$ homologous in $\mathbb{C} \backslash\{0\}$

Solution:

a)

$$
\left.\begin{array}{l}
n\left(\alpha, \alpha_{i}\right)=0=n\left(\alpha_{1}-\alpha_{i}\right) \\
n\left(\beta, \alpha_{i}\right)=0=n\left(\beta,-\alpha_{i}\right) \\
n\left(\gamma, \alpha_{i}\right)=0=\eta\left(\gamma,-2_{i}\right)
\end{array}\right\} \begin{aligned}
& \text { since } k_{i} \text { and- } z_{i} \\
& \text { "outside" the paths } \\
& \text { For example, }\left|\alpha_{i}-(-1)\right|=\sqrt{4+1}
\end{aligned}
$$

Therefore $n\left(\sigma, \alpha_{i}\right)=n(\alpha, 2 i)+n\left(\beta, z_{i}\right)+n(\gamma, 2 i)=0$
and similarly $n\left(\sigma_{1}-k_{i}\right)=0$
$\Rightarrow \sigma$ is homologous to zero in $\mathbb{C} \backslash\left\{\lambda_{i}, \alpha_{i}\right\}$
b) For any point $z \in \overline{\Delta(0,1 / 2)}$ we have $n(\alpha, z)=1, n(\beta, z)=0$, and $n(\gamma, z)=1$
Therefore $n(\sigma, z)=n(\alpha, z)-n(\gamma, z)=1-1=0$ and $n(\tau, z)=2 n(\beta, z)=0$
It follows that σ and τ are homologous in $\mathbb{C} \backslash \overline{\Delta(0,1 / 2)}$.
C) We have $n(\alpha, 0)=1, n(\beta, 0)=0$, and $n(\gamma, 0)=1$. Therefore $\sigma=(\alpha, \beta, \gamma)$ and $\tau=(\gamma, \gamma, \beta)$ are homologous in $\mathbb{C},\{0\}$ since

$$
\begin{aligned}
n(\sigma, 0) & =n(\alpha, 0)+n(\beta, 0)+n(\gamma, 0)=2= \\
& =n(\gamma, 0)+n(\gamma, 0)+n(\beta, 0)=n(\tau, 0)
\end{aligned}
$$

(2) Let $\alpha(t)=e^{\text {-it }}$ and $\beta(t)=3 \cos t+i \sin ^{t}$ for $-\pi / 2 \leq t \leq \pi / 2$. Compute

$$
\int_{\beta+\alpha} 16 \frac{\log (z)}{z(z-2)^{2}(z-4)} d z
$$

Solution:

The integrand $f(z)=\frac{16 \log (z)}{z(z-2)^{2}(z-4)}$ is analytic on $\mathbb{C} \backslash((-\infty, 0] \cup\{2\} \cup\{4\})$
Use partial fractions

$$
\begin{aligned}
& \frac{16}{z(z-2)^{2}(z-4)}=\frac{A}{z}+\frac{B}{z-4}+\frac{C}{(z-2)^{2}}+\frac{D}{z-2}= \\
& =\frac{A(z-4)(z-2)^{2}+B z(z-2)^{2}+C z(z-4)+D z(z-4)(z-2)}{z(z-2)^{2}(z-4)} \\
& =\frac{A(z-4)\left(z^{2}-4 z+4\right)+B z\left(z^{2}-4 z+4\right)+C z(z-4)+D z\left(z^{2}-6 z+8\right)}{z(z-2)^{2}(z-4)}
\end{aligned}
$$

Check these as errors an likely.
Therefore $\left\{\begin{array}{l}-16 A=16 \\ 20 A+4 B-4 C+8 D=0 \\ -8 A-4 B+C-6 D=0 \\ A+B+D=0\end{array} \Rightarrow\left\{\begin{array}{l}A=-1 \\ B=1 \\ C=-4 \\ D=0\end{array}\right.\right.$
We get $A \int_{\beta+\alpha} \frac{\log (z)}{z} d z=0$ since $n(\beta+\alpha, 0)=0$ and $B \int_{\beta+\alpha} \frac{\log (z)}{z-4} d z=0$ since $n(\beta+\alpha, 4)=0$
We have $n(\beta+\alpha, 2)=1$ So we calculate $C \int_{\beta+\alpha} \frac{\log (z)}{(z-1)^{2}} d z$ and $D \int_{\beta+\alpha} \frac{\log (z)}{z-2} d z$ using the Cauchy Integral Formula.
We get $D \int_{\beta+\alpha} \frac{\log (z)}{z-2} d z=D(2 \pi i) \log (2)=D 2 \pi i \ln 2$ and, since $\frac{d}{d z} \log (z)=\frac{1}{z}$,

$$
C \int_{\beta+2} \frac{\log (z)}{(z-2)^{2}} d z=\frac{C(2 \pi i)}{1!} \frac{1}{2}=C \pi i
$$

So, if my calculations are correct, we get

$$
\int_{p+\alpha} \frac{16 \log (z)}{z(z-2)^{2}(z-4)} d z=-4 \pi i
$$

(4) Prove that $\lim _{r \rightarrow \infty} \int_{c-i r}^{c+i r} \frac{1}{z \log (z)} d z=0$
when $c>1$.
(Hint: Consider $\begin{aligned} & \frac{1}{\gamma \log (z)} d z \text {, where } \gamma(t) \\ &=c+r e^{i t} \text { for } \\ &-\frac{\pi}{2} \leq t \leq \frac{\pi}{2} .\end{aligned}$

Notice that 'this estimate does not hold on $[\mathrm{c}-\mathrm{ir}, \mathrm{ctir}]$

Solution:

$$
\frac{1}{z \log (z)}
$$

is analytic when $\operatorname{Re}(z)>1$
 when $\operatorname{Re}(2)>1$
By Cauchy's Theorem $\int_{c-i r}^{c+i r} \frac{1}{z \log (z)} d z=$

$$
=\int_{\gamma} \frac{1}{z \log (z)} d z
$$

On γ we have $|z| \geq \sqrt{c^{2}+r^{2}} \geq r$ and $|\log (z)| \geq \ln \sqrt{c^{2}+\sigma^{2}}$. Therefore

$$
\left|\int_{c-i r}^{c+i r} \frac{1}{z \log (z)} d z\right|=\left|\int_{\gamma} \frac{1}{z \log (z)} d z\right| \leqslant \frac{\pi r}{r \ln \sqrt{c^{2}+r^{2}}} \rightarrow 0
$$

We get $\lim _{r \rightarrow \infty} \int_{c-i r}^{c+i r} \frac{1}{z \log (z)} d z=0$.

