Aalto university

Björn Ivarsson

Exercise sheet 9

Complex Analysis, MS-C1300.
Hand in exercise 1 and 2 in separate files for grading. Deadline Monday 20.11 at 23:59. The exercises should be uploaded to the correct folder on MyCourses as pdf-files with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Tuesday 21.11 or Wednesday 22.11.
(1) Assume that a function f is analytic in an annulus D centered at a point z_{0}, that is

$$
D=\left\{z \in \mathbb{C} ; a<\left|z-z_{0}\right|<b\right\},
$$

where $0 \leq a<b \leq \infty$ and $z_{0} \in \mathbb{C}$. Show that

$$
\int_{\left|z-z_{0}\right|=r} f(z) d z=\int_{\left|z-z_{0}\right|=s} f(z) d z
$$

whenever $a<r<s<b$ and the circles $\left|z-z_{0}\right|=r$ and $\left|z-z_{0}\right|=s$ are positively oriented.
(2) Let $\alpha(t)=e^{-i t}$ and $\beta(t)=3 \cos t+i \sin t$ for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$. Compute

$$
\begin{equation*}
\int_{\beta+\alpha} \frac{16 \log (z)}{z(z-2)^{2}(z-4)} d z \tag{6p}
\end{equation*}
$$

(3) Let $\alpha(t)=e^{i t}, \beta(t)=\frac{5}{3}+e^{i t}$, and $\gamma(t)=-1+2 e^{i t}$ for $0 \leq t \leq 2 \pi$.
(a) Is the cycle $\sigma=(\alpha, \beta, \gamma)$ homologous to zero in $\mathbb{C} \backslash\{2 i,-2 i\}$?
(b) Are the cycles $\sigma=(\alpha,-\gamma)$ and $\tau=(\beta, \beta)$ homologous in $\mathbb{C} \backslash \overline{\Delta\left(0, \frac{1}{2}\right)}$?
(c) Are the cycles $\sigma=(\alpha, \beta, \gamma)$ and $\tau=(\gamma, \gamma, \beta)$ homologous in $\mathbb{C} \backslash\{0\} ?$
(4) Prove that

$$
\lim _{r \rightarrow \infty} \int_{c-i r}^{c+i r} \frac{1}{z \log (z)} d z=0
$$

when $c>1$. (Hint: Consider $\int_{\gamma}(z \log (z))^{-1} d z$ where $\gamma(t)=$ $c+r e^{i t}$ for $-\frac{\pi}{2} \leq t \leq \frac{\pi}{2}$.)

