Aalto university Björn Ivarsson

Exercise sheet 9

Complex Analysis, MS-C1300.

Hand in exercise 1 and 2 in separate files for grading. Deadline Monday 20.11 at 23:59. The exercises should be uploaded to the correct folder on MyCourses as pdf-files with name and student number in the file name. Submission via MyCourses is the only accepted way. Done during class Tuesday 21.11 or Wednesday 22.11.

(1) Assume that a function f is analytic in an annulus D centered at a point z_0 , that is

$$D = \{ z \in \mathbb{C} ; a < |z - z_0| < b \},\$$

where $0 \leq a < b \leq \infty$ and $z_0 \in \mathbb{C}$. Show that

$$\int_{|z-z_0|=r} f(z) \, dz = \int_{|z-z_0|=s} f(z) \, dz$$

whenever a < r < s < b and the circles $|z - z_0| = r$ and $|z - z_0| = s$ are positively oriented. (6p)

(2) Let $\alpha(t) = e^{-it}$ and $\beta(t) = 3\cos t + i\sin t$ for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$. Compute

$$\int_{\beta+\alpha} \frac{16 \operatorname{Log}(z)}{z(z-2)^2(z-4)} \, dz.$$
(6p)

- (3) Let $\alpha(t) = e^{it}$, $\beta(t) = \frac{5}{3} + e^{it}$, and $\gamma(t) = -1 + 2e^{it}$ for $0 \le t \le 2\pi$. (a) Is the cycle $\sigma = (\alpha, \beta, \gamma)$ homologous to zero in $\mathbb{C} \setminus \{2i, -2i\}$?
 - (b) Are the cycles $\sigma = (\alpha, -\gamma)$ and $\tau = (\beta, \beta)$ homologous in $\mathbb{C} \setminus \overline{\Delta(0, \frac{1}{2})}$?
 - (c) Are the cycles $\sigma = (\alpha, \beta, \gamma)$ and $\tau = (\gamma, \gamma, \beta)$ homologous in $\mathbb{C} \setminus \{0\}$?

(4) Prove that

$$\lim_{r \to \infty} \int_{c-ir}^{c+ir} \frac{1}{z \operatorname{Log}(z)} \, dz = 0$$

when c > 1. (*Hint*: Consider $\int_{\gamma} (z \operatorname{Log}(z))^{-1} dz$ where $\gamma(t) = c + re^{it}$ for $-\frac{\pi}{2} \le t \le \frac{\pi}{2}$.)