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Week 47-2

LEARNING OUTCOMES

Students are able to solve the lecture problems, home problems, and exercise problems on

the topics of the week:

  The concepts, quantities, and equations of linear elasticity theory.

   Principle of virtual work for linear elasticity and virtual work densities.

   Virtual work densities of the solid, thin slab, bar, and torsion models.
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume.

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume.

Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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5.1 LINEAR ELASTICITY

In the usual setting, a reference solution ( , , )u V      with 0u 
  is assumed known. The

goal is to find a new solution ( , , )u V   corresponding to a slightly changed setting.
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TRACTION AND STRESS

Traction vector lim /F A   
  describes the internal force acting on a surface element in

classical continuum mechanics. Stress tensor   describes all internal forces acting on a

material element. The quantities are related by n  
    where n  is the unit normal to a

material surface.

The first index of a stress component refers to the direction of the surface normal and the

second that of the force component (on opposite sides directions are the opposite).
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GENERALIZED HOOKE’S LAW

The isotropic homogeneous material material model ( , ) 0g u 
   of the present course can

be expressed, e.g., in its compliance form as
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Above, E is the Young’s modulus,  the Poisson’s ratio, and / (2 2 )G E   the shear

modulus. Strain and stress are assumed to be symmetric.
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MATERIAL PARAMETERS

Material ρ [ 3kg / m ] E  [ 2GN / m ] ν  [ 1 ]

Steel 7800 210 0.3

Aluminum 2700 70 0.33

Copper 8900 120 0.34

Glass 2500 60 0.23

Granite 2700 65 0.23

Birch 600 16 -

Rubber 900 10-2 0.5

Concrete 2300 25 0.1
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EXAMPLE. Determine the stress-strain relationship of linear isotropic material subjected
to (a) xy plane stress and (b) x axis stress (uni-axial) conditions. Start with the generic

strain-stress relationships
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 In xy plane stress, the stress components having at least one z  as an index vanish

(notice that the corresponding strain components need not to vanish)
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 In the x axis stress, components having y  or z as an index vanish:
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EXAMPLE Determine the stress-strain relationship of linearly elastic isotropic material

subjected to (a) xy plane stress and (b) xy plane strain conditions. Start with the generic

strain-stress relationship.
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5.2 PRINCIPLE OF VIRTUAL WORK

Principle of virtual work int ext 0W W W     u   is just one form of the balance laws

of continuum mechanics. It is important due to its wide applicability and physical meanings

of the terms.

int int
c( : )VV V

W w dV dV      


ext ext ( )V VV V
W w dV f u dV     

 

ext ext ( )A AA A
W w dA t u dA     

 

The details of the final expressions may vary case by case, but the but the starting point is

always the generic expressions above!
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 Let us consider the balance law of momentum in its local form. Multiplication by the

variation of the displacement, integration over the domain, and integration by parts give

0f   
 r V 

c( ) ( : ( ) ) ( ) 0
V V A

f udV u f u dV n u dA                    
         u 

 Balance of momentum t n  
    written for the boundary, local form of moment of

momentum c   , and the definition of linear strain c2 ( )u u    
    give the final

form

c( : ) ( ) ( ) 0
V V A

W dV f u dV t u dA            
    u U 

 .
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DEFINITIONS AND NOTATIONS

 Domain n  , boundary  , and subset of the boundary t , u , etc.

 Function sets: 0 ( )C   (continuous functions on  ), 1( )C  , 2 ( )L    etc.

 Notations  ~ "exists"  &   ~ "for all"  & ~ "or"  & ~ "and"

 Fundamental theorem of calculus (integration by parts) 0, ( )u v C 

( )v uu d n uv d v d   
 

    
    { , , , }x y z 

 Fundamental lemma of variation calculus 0, ( )u v C 

0uvd


  v  0u   in 
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VIRTUAL WORK DENSITIES

Virtual work densities of the internal forces, external volume forces, and external surface

forces are (subscripts V  and A  denote virtual work per unit volume and area, respectively)

Internal forces:
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Virtual work densities consist of terms containing kinematic quantities and their “work

conjugates”!



Week 47-15

PRINCIPLE OF VIRTUAL WORK IN MECHANICS

The common dimension reduction (engineering) models like beam, plate, shell etc. models

have their origin in the principle of virtual work priciple. The principle is also the starting

point for numerical solution methods of various types: A series approximation is substituted

there to end up with an algebraic equations system for the unknown parameters.

Principle of
virtual
work Linear

equation
system

Series
approximation

Boundary
value

problem
solution

series
solution
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5.3 ENGINEERING MODELS

Engineering (dimension reduction) models are defined concisely by their kinematic and

kinetic assumptions. The rest is pure mathematics based on the principle of virtual work.

Bar: 0( , , ) ( )u x y z u x
  0xx   only

Beam: 0 0( , , ) ( ) ( ) ( , )u x y z u x x y z   
   0yy zz  

Curved beam: 0 0( , , ) ( ) ( ) ( , )u s n b u s s n b   
  

0nn bb  

Thin slab: 0( , , ) ( , )u x y z u x y
  0zz yz zx    

Membrane: ( , , ) ( , )u s n b u s n
 

, 0ss  , 0nn  , 0sn   only

Plate: ( , , ) ( , ) ( , ) ( )u x y z u x y x y z   
   0zz 

Shell: ( , , ) ( , ) ( , ) ( )u s n b u s n s n b   
   0bb 
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VIRTUAL WORK DENSITY OF A MODEL

Virtual work density w serves as a concise representation of the model in the recipe for

the element contribution. To derive the virtual work density (bar, beam plate, shell etc.)

   Start with the virtual work expression VV
W w dV    of an elastic body. Use the

kinematical and kinetic assumptions of the model to simplify Vw . After that,

  integrate over the small dimension(s) to end up with expression W w d  
  , where

the remaining integral is over the mathematical solution domain  . Then, virtual work

density of the model is w  .

The dimension of domain   is smaller than that of the physical domain due to the

integration over the small dimensions.
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5.4 SOLID MODEL

Solid model does not contain any assumptions in addition to those of the generic linear

elasticity theory. Therefore
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/ / / / / /
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The simplest element is a four-node tetrahedron with linear interpolations to the three

displacement components ( , , )u x y z , ( , , )v x y z , and ( , , )w x y z .
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 Usually, the approximations to the components are of the same type. For example, the

linear element interpolant for a tetrahedron element shape is given by

1
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3
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.

The solid model works with any geometry but use of plate, shell, beam, bar etc. models may

mean huge savings in computational complexity as dimension of the mathematical solution

domain is smaller than 3 (physical dimensions)!
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EXAMPLE 5.1 Compute the virtual work expression of external volume force with the

components constantxf   and 0y zf f  . Consider the tetrahedron element shown and

assume that the shape functions are linear (a four-node tetrahedron element).

Answer:
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 The linear shape functions can be deduced directly from the figure 1 /N z h , 2 /N x h

, 3 /N y h  and 4 1 / / /N x h y h z h     (sum of the shape functions is 1). Therefore,

the approximation is given by

1
1 1 2 2 3 3 4 4 1 2 3 4
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 Virtual work density of the external volume forces is
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 Virtual work expression of the external volume force is obtained as an integral over the

volume:

T T
1 1

3
2 2ext

3 3

4 4
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x x x
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The explicit form of the virtual work expression for a generic shape is too complicated to

be practical (due to the large number of the geometric parameters involved).
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EXAMPLE 5.2 A concrete cube of edge length L , density  , and elastic properties E , 

is subjected to its own weight on a horizontal floor. Calculate the displacement of the top

surface with one hexahedron element and tri-linear approximation. Assume that

displacement components in X   and Y directions vanish, 5 6 7 8Z Z Z Zu u u u   , and

that the bottom surface is fixed.

Answer:
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 Let the material coordinate system coincide with the structural system. The shape

functions for the upper surface nodes can be deduced directly from the figure.

Approximations to the displacement components are  ( /x L  , /y L  , /z L  )

0u  , 0v  ,  and

T
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 When the approximation is substituted there, the virtual work densities of the internal

forces, external forces, and their sum simplify to
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 Virtual work expression is obtained as integral of the density over the volume:
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 Finally, principle of virtual work 0W  5Zu implies that
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5.5 THIN SLAB MODEL

Thin slab model is the in-plane mode of the plate model and also the solid model in two

dimensions. The elasticity matrices [ ]E   and [ ]E   for the plane stress and plane strain

versions differ.

Internal forces:

T
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.

Although the virtual work density extw   for the external line force ,x yt t acting on the edges

belongs to the thin slab, it will be treated separately (like point forces/moments)!
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  Thin slab is a body which is thin in one dimension. The kinematic assumptions of the

thin slab model ( , )xu u x y  and ( , )yu v x y  give the (non-zero) strain components

/
/

/ /

xx

yy

xy

u x
v y

u y v x






             
          

.

 The kinetic assumptions of the plane stress version 0zz yz zx      (these are

replaced by kinematic assumptions 0zz yz zx      in the plane strain version) and

the generalized Hooke’s law imply the stress-strain relationship
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.
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 Therefore, the generic virtual work densities (per unit volume) simplify first to

TTT
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 Integration over the volume is performed in two steps: first over the thickness with

[ , ]z z z   ( | |t z z   ) and after that over the mid-plane ( , )x y  . As the virtual

work density of internal forces does not depend on z  and dV dzd 

int int int( )
z

Vz
W w dz d w d  


 

      in which

T

int
/ /
/ [ ] /

/ / / /

u x u x
w v y t E v y

u y v x u y v x
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 The contributions for the external forces follow in the same manner. Boundary of the

body is divided into the lower, upper and edge parts A , A , [ , ]S z z   , Surface

area elements are dA d   (upper and lower surfaces) and dA dzds  (edge). The

volume force acting on V  and the surface forces on A  and A  give
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ext ext ext ext
{ , }( )

z
V Az z zz

W w dz w d w d   
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 The contribution from the remaining boundary part [ , ]S z z  

ext ext extz
Az

W w dzds w ds  


 

     where
T
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y
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 is part of the virtual work expression for the thin slab model. In practice, the distributed

boundary force is taken into account by force elements by using the restriction of the

element approximation to the boundary. With a linear or bilinear element, distributed

force an element edge gives rise to a two-node force element.
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EXAMPLE 5.3 Derive the virtual work expression for the linear triangle element shown.

Young’s modulus E, Poisson’s ratio  , and thickness t are constants. Distributed external

force vanishes. Assume plane strain conditions. Also determine the displacement of node 1

when the force components acting on the node are as shown in the figure.

Answer: 1

1

2 1
1

(1 )(1 )
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u
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 Nodes 2 are 3 are fixed so the non-zero displacement components are 1Xu and 1Yu .

Linear shape functions 1 ( ) /N L x y L   , 2 /N x L  and 3 /N y L  are easy to deduce

from the figure. Therefore

1

1

X

Y

uu L x y
uv L

    
   

   
so 1

1

/ 1
/

X

Y

uu x
uv x L
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1
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/

X

Y

uu y
uv y L

    
        

.

 Virtual work density of internal forces is given by

T
1 1

int
1 12

1 1 1 1

1 0
1 1 0
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.

 Integration over the triangular domain gives (integrand is constant)
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T
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 Principle of virtual work in the form 1 2 0W W W      a and the fundamental

lemma of variation calculus give
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1

1

3 4 1 1
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 . 

NOTICE: The point forces acting on a thin slab should be considered as “equivalent nodal

forces” i.e. just representations of distributed forces acting on the edges with some selection

of the element division. Therefore, refinement of the mesh requires a new set of equivalent

nodal forces. Under the action of an actual point force, exact solution to the displacement

becomes non-bounded so also the numerical solution to the displacement at the point of

action increases without a bound, when the mesh is refined.
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EXAMPLE 5.4 A thin slab is loaded by an evenly distributed traction having the resultant

F as shown. Calculate the displacement at the midpoint of edge 5-10 by using bi-linear

approximation in each element and the plane-stress assumption. Thickness of the slab is t.

Material parameters E and 1/ 3   are constants.

Answer: 5 10 6856 3.96072
2 1731

X Xu u F F
Et Et


  (bar model or 0   gives 4 F

Et
 )

X

L

4L

1 2 53 4

6 7 108 9

41 2 3

Y
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 Mathematica solution can be obtained with the problem description tables
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5.6 BAR MODEL

Bar model is one of the loading modes of the beam model and the solid model in one

dimension. Virtual work densities of the model are given by

Internal forces: int d u duw EA
dx dx
   

External forces: ext
xw uf   , ext

xw uF   .

Although the virtual work density extw   for the external point force xF acting on the edges

(here on the nodes) belongs to the bar model, it will be treated separately by forces/moments

elements.
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  A bar is a thin body in two dimensions. The kinematic and kinetic assumptions of the

bar model ( , , ) ( )u x y z u x
 

 and only 0xx  imply the non-zero strain and stress

components

xx
du
dx

    and xx xx
duE E
dx

   .

 Therefore, virtual work densities of the solid model simplify to

TT

int
xy xyxx xx

V yy yy yz yz

zz zz zx zx

d u duw E
dx dx

  
    

   

      
      

           
       
       

,
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T

ext
x x

V y y x

z z

f u
w f u f u

f u


  



   
   

    
   
   

   and

T

ext
x x

A y y x

z z

t u
w t u t u

t u


  



   
   

    
   
   

.

 Integration over the body consists of integration over the cross-section (small

dimensions of the bar and beam models) and integration over the length

int int int int( )V VV A
W w dV w dA d w d     

          in which

int d u duw EA
dx dx
     . 

 The contributions of the external forces are obtained in the same manner. Considering

first the volume force and the surface force acting on the circumferential part (in the final
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form, xf  denotes force per unit length although the symbol is the same as for the volume

force)

ext ext ext ext
V AV A

W w dV w dA w d    
        in which

ext ( )x x xA S
w u f dA t ds uf       . 

 Surface forces on the remaining area (end surfaces) give (in the final form, xF  is force

acting at an end point in the direction of the axis)

ext ext [ ]A x xA A
W w dA u t dA uF           .

Virtual work of traction at the end surfaces belongs to the bar model but the contribution

is taken into account by a force element of one node.
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5.7 TORSION MODEL

Torsion model is one of the loading modes of beam. Virtual work densities of the model

are given by

Internal forces: int d dw GJ
dx dx
    

External forces: ext
xw m   , ext

xw M  

Although the virtual work density extw   for the external point moment xM acting on the

edges (here on the nodes) belongs to the torsion model, it will be treated separately by

moment elements.
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 The kinematic assumptions of the torsion model 0xu  , ( )yu z x  and ( )zu y x

follow from the kinematic assumption of the beam model when only ( ) 0x  . The

strain-displacement relationships and the generalized Hooke’s law give

xy
dz
dx
   , zx

dy
dx
  , xy xy

dG Gz
dx
    ,  and zx zx

dG Gy
dx
   .

  Virtual work densities of internal and external forces follow from the generic

expressions

TT

int 2 2( )
xy xyxx xx

V yy yy yz yz

zz zz zx zx

d dw G z y
dx dx
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T

ext ( )
x x

V y y z y

z z

f u
w f u yf zf

f u


  



   
   

     
   
   

 and

T

ext ( )
x x

A y y z y

z z

t u
w t u yt zt

t u


  



   
   

     
   
   

.

 Virtual work expressions are integrals over the volume divided here as integrals over the

cross-section and length. Assuming that the shear modulus is constant

int int int int( )V VV A
W w dV w dA d w d     

           in which

int 2 2( )
A

d d d dw z y GdA GJ
dx dx dx dx
           . 

 The geometrical quantity 2 2( )
A

J z y dA   is called as the polar moment of the cross-

section.
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 The contribution from the external forces are obtained in the same manner (volume

forces in V and surface forces on the entire A have to be accounted for). The volume

and the circumferential area give

ext ext ext ext
V AV A

W w dV w dA w d    
      in which

ext [ ( ) ( ) ]z y z y xA S
w yf zf dA yt zt ds m         . 

 In the final form above, xm  is the moment per unit length.

 Surface forces on the remaining area (end surfaces) give rise to external moments xM

acting at the ends. These point moments are treated by using one-node force-moment

elements.


