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LEARNING OUTCOMES

Students are able to solve the lecture problems, home problems, and exercise problems on
the topics of the week:

O The concepts, quantities, and equations of linear elasticity theory.
O Principle of virtual work for linear elasticity and virtual work densities.

O Virtual work densities of the solid, thin slab, bar, and torsion models.
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BALANCE LAWS OF MECHANICS

Balance of mass (def. of a body or a material volume) Mass of a body is constant

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume.

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular
momentum within a material volume equals the external moment resultant acting on the

material volume.
Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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5.1 LINEAR ELASTICITY

In the usual setting, a reference solution (&°,0°,V°) with G° =0 is assumed known. The

goal is to find a new solution (&,0,V) corresponding to a slightly changed setting.
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A constitutive equation of type g(&,0) =0, bringing the material details into the model, and

displacement boundary conditions are also needed.
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TRACTION AND STRESS

Traction vector & = limAF / AA describes the internal force acting on a surface element in
classical continuum mechanics. Stress tensor & describes all internal forces acting on a

material element. The quantities are related by 6 =i-& where i is the unit normal to a

material surface.

—

\%

The first index of a stress component refers to the direction of the surface normal and the
second that of the force component (on opposite sides directions are the opposite).
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GENERALIZED HOOKE’S LAW

The isotropic homogeneous material material model g(&,0) =0 of the present course can

be expressed, e.g., in its compliance form as

( A — —_ e 3\ ( A ( A

Exx . 1 v —v Oy 7xy . Oxy
Strain-stress: 12y (=—| v 1 -v =[E] ™ oy and <7y, =10 |
(€22 ) vy L Oz [V 2x ) O zx )

(gxx\ (aux / ox ,7/Xy\ (ou, / oy +du, / OX)

Strain-displacement: &y, r=q0uy /0y and <y, r=40uy/oz+0u, /oy
&, ) |0OU,/0z] (72x) |0uU;[ox+aouy/ oz

Above, E is the Young’s modulus, v the Poisson’s ratio, and G = E /(2+ 2v) the shear

modulus. Strain and stress are assumed to be symmetric.
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MATERIAL PARAMETERS

Material p [kg/m3] E [GN/m?] v [1]
Steel 7800 210 0.3
Aluminum 2700 70 0.33
Copper 8900 120 0.34
Glass 2500 60 0.23
Granite 2700 65 0.23
Birch 600 16 -
Rubber 900 102 0.5
Concrete 2300 25 0.1
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EXAMPLE. Determine the stress-strain relationship of linear isotropic material subjected
to (a) xy —plane stress and (b) x —axis stress (uni-axial) conditions. Start with the generic

strain-stress relationships

Exx . R e A e 7xy . Oxy
Ewi=—|—Vv 1 —vi|iow; and <y, r=—90y; (-
W~ E 1 Yy 2 (=5
(622 LYY 2 oz ) [ V2x ) (O2x

o E |1 v]||¢€
Answer: (a) {%}: { J{ Xx}and Gy =Gray (b) O = Eéig
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e In xy—plane stress, the stress components having at least one z as an index vanish

(notice that the corresponding strain components need not to vanish)

( A — —_ A ( A ( 3\

Exx . 1 v —v||ok 7xy . Oxy
<5W>:E -v 1 —vijou and 1V yz >:E< 0 =
(€72 v v 1] | 0 LV 2x ) \ 0 J

o 1 &g
{ xx}: EZ{ V}{ xx} and Gy =Gy «
Oy | 1-vo|v 1]|&y

e Inthe x —axis stress, components having y or z as an index vanish:

( A — — ( A

Exy . 1 —v —v||oww ' xy . 0

<5W>:E -v 1 —vi|§ 0 and <7yz>:6<0> = Oy =E&y €
& -V -V 1 0 4 0

(Y ZZ ) — - & 7 L/ ZX ) P
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EXAMPLE Determine the stress-strain relationship of linearly elastic isotropic material
subjected to (a) xy —plane stress and (b) xy —plane strain conditions. Start with the generic

strain-stress relationship.

Oy Exx = 1 v 0
Answer: (a) {0y ¢ =[E]s &y ¢ Where [E], = 5| v 1 0
1-v
\GXy) j/xyj _O 0 (1—V)/2_
Oy Exy = (1-v v 0 |
b) <ow ¢ =[E]l. < ew ¢ With [E].. = v l-v 0
Oy 7y 0 0 @-2v)/2)
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5.2 PRINCIPLE OF VIRTUAL WORK

Principle of virtual work sW = W™ + SW® =0 v 50 is just one form of the balance laws
of continuum mechanics. It is important due to its wide applicability and physical meanings

of the terms.
int t - . o=
sw j Swintdy = — jv (6: 68,)dV

SWEX = j WtV = j (f -su)dVv

SW ext NG
o dA= t-ol)dA N —--
J‘ Wi J‘ (t-50) PR _——

The details of the final expressions may vary case by case, but the but the starting point is

always the generic expressions above!
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e Let us consider the balance law of momentum in its local form. Multiplication by the

variation of the displacement, integration over the domain, and integration by parts give
V-6+f=0 reV <

[, (V-6+F)sudv = (-6:(Vo)+f-smav+[, (1-5-60)dA=0 vau

e Balance of momentum t =f-& written for the boundary, local form of moment of
momentum & =&, and the definition of linear strain 2& =V + (V) give the final

form

évvz—jv (&:5§C)dV+jV (f.5u)dV+jA (T-60)dA=0 VoieU.
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DEFINITIONS AND NOTATIONS

Domain Q < R", boundary 6Q, and subset of the boundary oQ;, 6Q,,, etc.

Function sets: CO(Q) (continuous functions on Q), Cl(Q), L, (Q) etc.

Notations 3 ~ "exists" & V ~"forall" & v~"or" & A~ "and"

Fundamental theorem of calculus (integration by parts) u,v CO(Q)
i Xga=] _ mudr-[ vdo aefxyz..}
=], (g o V3 Y, Z,...

Fundamental lemma of variation calculus u,v e CO(Q)
jQ uvdQQ=0 YW < u=0in Q
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VIRTUAL WORK DENSITIES

Virtual work densities of the internal forces, external volume forces, and external surface

forces are (subscripts V and A denote virtual work per unit volume and area, respectively)

4 N T e N (5 N T e N
Oy Oy 7 xy Oxy

Internal forces: SWy" =—{8&yy ¢t 10y t=1%yz( {0y ¢

%62 |0z) (97x) (O]
( \T ( N ( \T ( N
OUy fy OUy ty
. ext ext
External forces: ow;™ ={duy ¢ | fy o oWa =q0uy ¢ <ty ¢
ouz ] (T ouz )tz

Virtual work densities consist of terms containing kinematic quantities and their “work
conjugates”!
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PRINCIPLE OF VIRTUAL WORK IN MECHANICS

The common dimension reduction (engineering) models like beam, plate, shell etc. models
have their origin in the principle of virtual work priciple. The principle is also the starting
point for numerical solution methods of various types: A series approximation is substituted

there to end up with an algebraic equations system for the unknown parameters.

Boundary - ______
~ value ERREN _
. solution
Principle of problem )
I
virtual ! \
: ri
work \/ Linear Series

approximation system
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5.3 ENGINEERING MODELS

Engineering (dimension reduction) models are defined concisely by their kinematic and

kinetic assumptions. The rest is pure mathematics based on the principle of virtual work.
Bar: G(x,Yy,z)="Uy(x) oy # 0 only
Beam: U(X,Y,z) =g (X)+ 6y (X)x p(y,z) Oy =07, =0

Curved beam: G(s,n,b) =0y (s)+6,(s)x p(N,b) &,y =opp =0

Thinslab: G(x,y,z)=0y(x,y) Oz =0y; =02 =0
Membrane: U(s,n,b)="0(s,n), oss 720, opgy 20, ogy =0 Only
Plate: G(x,y,z)=0(X,y)+6(x,y)x 5(z) o, =0

Shell: G(s,n,b) =G(s,n) +6(s,n)x p(b) opp =0
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VIRTUAL WORK DENSITY OF A MODEL

Virtual work density ow serves as a concise representation of the model in the recipe for

the element contribution. To derive the virtual work density (bar, beam plate, shell etc.)

O Start with the virtual work expression oW = le ow, dV of an elastic body. Use the

kinematical and kinetic assumptions of the model to simplify 5w, . After that,

O integrate over the small dimension(s) to end up with expression oW = jQ5WQdQ, where
the remaining integral is over the mathematical solution domain Q. Then, virtual work

density of the model is Swq,.

The dimension of domain Q is smaller than that of the physical domain due to the

Integration over the small dimensions.
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5.4 SOLID MODEL

Solid model does not contain any assumptions in addition to those of the generic linear

elasticity theory. Therefore

(osulox)'  (euléx) [asuloy+osviex)'  (ouldy+oviox)
SWT=—305v/dy + [E]{ovioy —{05vIoz+oowldy: Giov/oz+ow/dyy,
oow/ oz ow/oz| |0ow/ox+0oouloz) (ow/ox+ou/ oz

e ST ( A - NT( 3
ou fy ou| |ty
ext

oWy =4 OV ¢ <fy>, OWR =14 0OV ¢ Wty p
OW] | f, ow] |t

The simplest element is a four-node tetrahedron with linear interpolations to the three
displacement components u(x,y, z), v(x,v,z), and w(X, Y, z).
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e Usually, the approximations to the components are of the same type. For example, the

linear element interpolant for a tetrahedron element shape is given by

) [ ] N]_

u Uyp Uy Uyx3z Uyg N
3

sz _Uzl Uzo Uz uz4_ N4

(N,) 1 1 1 17t

The solid model works with any geometry but use of plate, shell, beam, bar etc. models may
mean huge savings in computational complexity as dimension of the mathematical solution

domain is smaller than 3 (physical dimensions)!
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EXAMPLE 5.1 Compute the virtual work expression of external volume force with the

components f, = constant and f, = f, =0. Consider the tetrahedron element shown and

assume that the shape functions are linear (a four-node tetrahedron element).

r5ux1\T rl\
su 31
Answer: WPt =" x4 ! T JH
5UX3 24 |1
5UX4, \l)
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e The linear shape functions can be deduced directly from the figure Ny =z/h, N, =x/h
, Ng=y/hand N, =1-x/h—-y/h—-z/h (sum of the shape functions is 1). Therefore,

the approximation is given by

R ( ) B 7] N]_
u Nluxl + NZUXZ + N3ux3 + N4ux4 Uyp Uyxp Uyxz Uxg N
SV =+ N]_Uyl-i- N2Uy2+N3Uy3+N4Uy4 = Uyl Uy2 Uy3 Uy4 X N2 >
3
sz L Nluzl + NZUZZ + N3U23 + |\|4Uz4 ) _Uzl Uzp  Uzz uz4_ N4
e Virtual work density of the external volume forces is
( N B ] ( A T e N
) T Nl T 5UX1 5Uy1 5U21 o 5UX1 Nl
t oul N, | |OUyp OUyp OUyp fx Suy, | IN
5\/\&e/xz<5v><0>:<N> 5 5 5 <O>:<5 ><N>fx
u u u u
\5W) \0) 3 X3 y3 23 \O) X3 3
\N4, _5UX4 5Uy4 5UZ4_ \5UX4, \N4,
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e Virtual work expression of the external volume force is obtained as an integral over the

volume:
(5UX1\T ( z/h ) (5UX1\T 1)
Su X/ h Su 311
SW Xt — ) X2 { I , > L dV =+ X2 | fih L. €
OUys | WV y/h OUy3 24 |1
| OUyy | 1-x/h-y/h-z/h | OUyy | 1

The explicit form of the virtual work expression for a generic shape is too complicated to

be practical (due to the large number of the geometric parameters involved).
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Let the material coordinate system coincide with the structural system. The shape
functions for the upper surface nodes can be deduced directly from the figure.

Approximations to the displacement components are (S=x/L, n=y/L,{=2z/L)

' \T ' A
1-8)A-n)¢ | |uzs
1-— u
u=0,v=0, and w=- -(L=m)¢ . Z5>=£uz5, giving@=£u25.
1-&)nd uzs| L oz L
. sng ) |Uzs,

When the approximation is substituted there, the virtual work densities of the internal

forces, external forces, and their sum simplify to

0 I (11— V v 1 0

SWt=— 0 E v 1-v v { 0
1+v)(1-2v)

\aaw/az) v 1% l—v_ \aw/az)
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F5U\T (fx\ ' O \T ' O )
5\/\6th< oV ¢ <fy>:< 0 > <« 0 ¢,
Ow| f, (z/Louzs| |—p9]

EQd-v) Ugs
L+v)1-2v) L2

ext _

Swy = oW + WG = —5uzg

+£ pg]
L

e Virtual work expression is obtained as integral of the density over the volume:

El-v) K
LAz 25T POl

SW =jv S, dV =—SUzg|

e Finally, principle of virtual work oW =0 V du, s implies that

_ 1pgl®1-v-2v°

Ure = &
27 9 B 1-y
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5.5 THIN SLAB MODEL

Thin slab model is the in-plane mode of the plate model and also the solid model in two
dimensions. The elasticity matrices [E], and [E],. for the plane stress and plane strain

versions differ.

VT

oou [ ox ou [ ox
Internal forces: Swijt = — oV 1 oy . t[E], 4 oviey b
(0ou /oy +06v/ox ou /oy +ov/ox|

T T
ou f oul’ [t
External forces: Swe" = “SWEN = L
v | Ty ov) |ty

Although the virtual work density 5w§§ for the external line force ty,t, acting on the edges
belongs to the thin slab, it will be treated separately (like point forces/moments)!
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e Thin slab is a body which is thin in one dimension. The kinematic assumptions of the

thin slab model uy = u(x,y) and uy =Vv(x,y) give the (non-zero) strain components

s 3\

s 3\

Exx ou [ Ox
VEYY (=9 ov /oy -
Yy [ou/oy+ov/ox|

J

e The kinetic assumptions of the plane stress version o, =0y, =0, =0 (these are
replaced by kinematic assumptions &;; = 7y, =7, =0 in the plane strain version) and

the generalized Hooke’s law imply the stress-strain relationship

O xx c 1 0 | Exx Exx
<c7yy>:1_V2 v 1 0 1€yy r=LEls &y 1
kGXy) _O O (1_V)/2_ k7/)(y) k7/)(y

Week 47-27



Therefore, the generic virtual work densities (per unit volume) simplify first to

int

SW

0

T ( R e \T s 3 \T ( R
O xx oy Xy Oxy O yx O xx
> <ny>—<57/yz> <0yz>:—<58yy> 1Oy ¢
02z) 97x) (O \57xy Oxy |
T ) . T ,
Exx o0ou | ox ou | ox
- [Elsqéyy p=—1 oov /oy > [Els s ov /oy
Yy (0ou /oy +0ov/ox (ou /oy +ov/ox|
(f (5u A T (t
1 (su)" [y ot X (su)T [ty
1 fy = and owax =10Uy ¢ qty ¢ = .
ov] |fy sv) |ty
|, ou; ) (L,
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e Integration over the volume is performed in two steps: first over the thickness with
zelz_,z,] (t=z,. —z_|) and after that over the mid-plane (X,y) e Q . As the virtual

work density of internal forces does not depend on z and dV = dzdQ

WM =[ ([ swdz)dQ = [ swi'dQ  inwhich

osulox ' oulox )
SWO! = —4 o5V 1 oy - t[E]l,{ oviey ;. €
|0ou /oy +06v/ox ou /oy +ov/ox|

e The contributions for the external forces follow in the same manner. Boundary of the
body is divided into the lower, upper and edge parts A_, A,, S =0Qx[z_,z. ], Surface
area elements are dA=dQ (upper and lower surfaces) and dA =dzds (edge). The

volume force acting on V and the surface forceson A_ and A, give
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SW Xt = I (j owgtdz +y" . Z}5W6Xt)d§2 _[ swSdQ in which

ext _ | OU ext.y, | Tx x|, |ou ! T
oo { }(I o dz{fy}+226{2’z+} {ty})_{5v} {fy} €

The contribution from the remaining boundary part S =oQ x[z_,z, ]

T
ext _ Zp o ext _ ext ext _|OU| |
oW _Iag _[Z_ OWx dzds—_[aQ OWznds where OWigy = {5\/} {ty}

Is part of the virtual work expression for the thin slab model. In practice, the distributed
boundary force is taken into account by force elements by using the restriction of the
element approximation to the boundary. With a linear or bilinear element, distributed
force an element edge gives rise to a two-node force element.
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EXAMPLE 5.3 Derive the virtual work expression for the linear triangle element shown.
Young’s modulus E, Poisson’s ratio v, and thickness t are constants. Distributed external
force vanishes. Assume plane strain conditions. Also determine the displacement of node 1

when the force components acting on the node are as shown in the figure.
| Y

Ux1 __F 1+v)1-2v) 1
u,| Et  1-v 1
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Nodes 2 are 3 are fixed so the non-zero displacement components are uy; and uy;.
Linear shape functions N; = (L—-x—-y)/L, N, =x/L and N5 = y/ L are easy to deduce

from the figure. Therefore

u =|_—X—y Ux1 0 ou / ox =_£ Ux1 and 8u/8y =_£ Ux1
v L Uy 1 ov [ Ox L | Uyq ov/ oy L|uyq |

Virtual work density of internal forces is given by

- 5UX1 I 1 i _1—1/ | % 0 1( qu )
owit = ou > v 1-v 0 T u -
Yl 12 (L+v)(1-2v) vl
\5UX1+5UY1, i 0 0 (1—21/)/2_ \uX1+qu,

Integration over the triangular domain gives (integrand is constant)
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\T [ =1 N
5UX1 1—1/ 1% 0 qu

oWt =—4 OUyq % (E v 1l-v 0 T Wy &
\5UX1+5UY1,

1 1-2
B2 0 0 ez [ugg +uyy
T
é\le— Et 5UX1 3—4y 1 Ux 1 | «
4(1+V)(1—2V) 5UY1 1 3—4y Uy 1

T
é\Nz _ 5UX1 —F «
5UY1 —F .

Principle of virtual work in the form oW = SW!+6W?2 =0 Vsa and the fundamental

Vo

lemma of variation calculus give

-
ou 3-4 1 u 1 ou
SW=—1"_%1 ¢ Et Y ULbETh=0 w7 XL o

5UY1 4(1+V)(1—2V) 1 3—4y qu 1 5UY1
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Et 3—-4v 1 qu = 1 N
AL+v)A-2v)| 1 3—4v||uy, 1)
Ux1 _ F 1+v)Q1-2v) 1 pa
u,| Et  1-v 1)

NOTICE: The point forces acting on a thin slab should be considered as “equivalent nodal

forces” i.e. just representations of distributed forces acting on the edges with some selection
of the element division. Therefore, refinement of the mesh requires a new set of equivalent
nodal forces. Under the action of an actual point force, exact solution to the displacement
becomes non-bounded so also the numerical solution to the displacement at the point of

action increases without a bound, when the mesh is refined.
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EXAMPLE 5.4 A thin slab is loaded by an evenly distributed traction having the resultant
F as shown. Calculate the displacement at the midpoint of edge 5-10 by using bi-linear
approximation in each element and the plane-stress assumption. Thickness of the slab is t.

Material parameters E and v =1/ 3 are constants.

Uyxs+Ux1p :6856 F F

Answer:

~3.96072— (bar model or v =0 gives 4i )
2 1731 Et Et Et
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e Mathematica solution can be obtained with the problem description tables

model properties geometry
1 PLANE ({E, v}, {t}) Polygon[{1, 2, 7, 6}]
2 PLANE {({E, v}, {t}} Polygon[{2, 3, 8, 7}]
3 PLANE {{E, v}, {t}} Polygon[{3, 4, 9, 8}]
4 PLANE {{E, v}, {t}} Polygon[{4, 5, 10, 9} ]
5 FORCE {{E, {}, {0, 0}, {0, 0}} Line[{5, 10} ]
{XJYJZ} {UXJUYJUZ} {@XJGYJGZ}

1 {0, 0, 0} {0, 0, 0} {0, 0, 0}

2 {L, 0, @} {uxX[2], uy[2], @} {0, 9, 0}

3 {2L, 9, 0} {uX[3], uY[3], 0} {0, 0, 9}

4 {3L, 0, 0} {uX[4], uY[4], 0} {0, 0, 0}

5 {4L, 0, 0} {uX[5], uY[5], 0} {0, 0, 0}

6 {0, L, 9} {@, 9, @} {0, 0, 0}

7 {L, L, @} {uxX(7], uY[7], @} {0, 0, 0}

8 {2L, L, 0} {ux[8], UY[8] 0} {0, 0, 0}

9 {3L, L, 0} {uX[9], uY[9], 0} {0, 0, 0}

10 {4L, L, 9} {uX[1l@], uYy[10], @} {0, 0, 0}
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5.6 BAR MODEL

Bar model is one of the loading modes of the beam model and the solid model in one

dimension. Virtual work densities of the model are given by

Internal forces: Sw!t = — il EA du

dx dx

External forces: Sw® = suf,, Swiy = SUF,.

Although the virtual work density §w§§ for the external point force F, acting on the edges

(here on the nodes) belongs to the bar model, it will be treated separately by forces/moments

elements.
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e A bar is a thin body in two dimensions. The kinematic and kinetic assumptions of the

bar model U(X,y,z)=0U(x) and only o,, #0 imply the non-zero strain and stress
components

du du
Exx =i and oy, =E&yy = E&.

e Therefore, virtual work densities of the solid model simplify to

e A T e N\ f5 A T ( N\
Oy Oy Vxy Oxy

5\/\/\i/nt=—<5gyy> 9 >:—d5uEdu

Ty (—1yz ( 0y T

\5522 )
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NT a - T ¢ a

(fx OUy ty ouy
owyt =1 f, b Jouy p=f,ou and SwR' ={t, t {duy r=t.u.
(T2) [0z 2] ouz)

Integration over the body consists of integration over the cross-section (small

dimensions of the bar and beam models) and integration over the length
Swint = f, SwMtdy = [, (], 0 wWMdA)dQ = [, ow M40 in which

Syint :_d5u EAdu &
dx dx

The contributions of the external forces are obtained in the same manner. Considering

first the volume force and the surface force acting on the circumferential part (in the final
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form, f, denotes force per unit length although the symbol is the same as for the volume

force)

OW X = f switdv +I SWEdA = J' SWENAQ in which
owp =5u([, fydA+ [ tyds)=ouf,. €
A X S X X

Surface forces on the remaining area (end surfaces) give (in the final form, F, is force

acting at an end point in the direction of the axis)
ext ext
W= [, WRIdA=Y  sulf, tdAl=D . SUF,.

Virtual work of traction at the end surfaces belongs to the bar model but the contribution

IS taken into account by a force element of one node.
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5.7/ TORSION MODEL

Torsion model is one of the loading modes of beam. Virtual work densities of the model

are given by

dx dx

Internal forces:

External forces: Sw& = sgpm,, Swiy = 6pM

Although the virtual work density §w§§ for the external point moment M, acting on the

edges (here on the nodes) belongs to the torsion model, it will be treated separately by

moment elements.
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e The kinematic assumptions of the torsion model u, =0, u, =—2¢(X) and u, = y@(x)

follow from the kinematic assumption of the beam model when only ¢(x) #0. The

strain-displacement relationships and the generalized Hooke’s law give

d d d
7/xy:_zd_f’ 7/2x:yd_f’ ny:G7/xy:_sz_f’ and o, =Gy, =Gy

d¢

&.

Virtual work densities of internal and external forces follow from the generic

expressions

Oy Oy oy Xy Oxy

§m«i/nt:—<5gyy> <c7yy>—<§}/yz> <Gyz>=——G(Z +Y )d—

\5522 )
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NT ¢ a NI a

(fx OUy ty OUy
oWyt =1 f, ¢ {duy t=0p(yf, —zf,) and SWR' ={t, t {Suy ¢ =p(yt, —zty).
| T2) (90U ) [oUg)

Virtual work expressions are integrals over the volume divided here as integrals over the

cross-section and length. Assuming that the shear modulus is constant

(svv‘”tzj SwMtdy = j (j SWMdAYdQ = j SWtdQ  in which

- d5¢ dg _ dop .. dg
swint 7 GdA Gl—*+ . €
Q I 2 +y") ax . dx " dx

The geometrical quantity J = _[A (z2 + yz)dA Is called as the polar moment of the cross-

section.
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e The contribution from the external forces are obtained in the same manner (volume
forces in V and surface forces on the entire A have to be accounted for). The volume

and the circumferential area give

ext ext ext ya ext - -
oW = [ owgdv + [ sWR'dA= [ owi'dQ  in which
5weXt=5¢[jA (yf, —zf, )dA+ jS (yt, —zt,)ds] = opm, . €

In the final form above, m, is the moment per unit length.

e Surface forces on the remaining area (end surfaces) give rise to external moments M,
acting at the ends. These point moments are treated by using one-node force-moment

elements.
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