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Transcriptional regulation

▶ Transcriptional regulation is largely controlled by protein-DNA interactions
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R E V I EW S

ORTHOLOGY

Two sequences are orthologous
if they share a common ancestor
and are separated by speciation.

PHYLOGENETIC FOOTPRINTING 

An approach that seeks to
identify conserved regulatory
elements by comparing genomic
sequences between related
species.

MACHINE LEARNING

The ability of a program to learn
from experience — that is, to
modify its execution on the basis
of newly acquired information.
In bioinformatics, neural
networks and Monte Carlo
Markov Chains are well-known
examples.

Identification of regions that control transcription
An initial step in the analysis of any gene is the identifi-
cation of larger regions that might harbour regulatory
control elements. Several advances have facilitated the
prediction of such regions in the absence of knowl-
edge about the specific characteristics of individual cis-
regulatory elements. These tools broadly fall into two
categories: promoter (transcription start site; TSS)
and enhancer detection. The methods are influenced
by sequence conservation between ORTHOLOGOUS genes
(PHYLOGENETIC FOOTPRINTING), nucleotide composition and
the assessment of available transcript data.

Functional regulatory regions that control transcrip-
tion rates tend to be proximal to the initiation site(s) of
transcription. Although there is some circularity in the
data-collection process (regulatory sequences are sought
near TSSs and are therefore found most often in these
regions), the current set of laboratory-annotated regula-
tory sequences indicates that sequences near a TSS are
more likely to contain functionally important regulatory
controls than those that are more distal. However, specifi-
cation of the position of a TSS can be difficult. This is fur-
ther complicated by the growing number of genes that
selectively use alternative start sites in certain contexts.
Underlying most algorithms for promoter prediction is a
reference collection known as the ‘Eukaryotic Promoter
Database’ (EPD)4. Early bioinformatics algorithms that
were used to pinpoint exact locations for TSSs were
plagued by false predictions5. These TSS-detection tools
were frequently based on the identification of TATA-box
sequences, which are often located ~30 bp upstream of a
TSS. The leading TATA-box prediction method6, reflect-
ing the promiscuous binding characteristics of the TATA-
binding protein, predicts TATA-like sequences nearly
every 250 bp in long genome sequences.

A new generation of algorithms has shifted the
emphasis to the prediction of promoters — that is,
regions that contain one or more TSS(s). Given that
many genes have multiple start sites, this change in
focus is biochemically justified.

The dominant characteristic of promoter sequences
in the human genome is the abundance of CpG dinu-
cleotides. Methylation plays a key role in the regulation
of gene activity. Within regulatory sequences, CpGs
remain unmethylated, whereas up to 80% of CpGs in
other regions are methylated on a cytosine. Methylated
cytosines are mutated to adenosines at a high rate,
resulting in a 20% reduction of CpG frequency in
sequences without a regulatory function as compared
with the statistically predicted CpG concentration7.
Computationally, the CG dinucleotide imbalance can be
a powerful tool for finding regions in genes that are
likely to contain promoters8.

Numerous methods have been developed that
directly or indirectly detect promoters on the basis of
the CG dinucleotide imbalance. Although complex
computational MACHINE-LEARNING algorithms have been
directed towards the identification of promoters, simple
methods that are strictly based on the frequency of CpG
dinucleotides perform remarkably well at correctly pre-
dicting regions that are proximal to or that contain the

does not reveal the entire picture. There is only partial
correlation between transcript and protein concentra-
tions3. Nevertheless, the selective transcription of genes
by RNA polymerase-II under specific conditions is cru-
cially important in the regulation of many, if not most,
genes, and the bioinformatics methods that address the
initiation of transcription are sufficiently mature to
influence the design of laboratory investigations.

Below, we introduce the mature algorithms and
online resources that are used to identify regions that
regulate transcription. To this end, underlying meth-
ods are introduced to provide the foundation for
understanding the correct use and limitations of each
approach. We focus on the analysis of cis-regulatory
sequences in metazoan genes, with an emphasis on
methods that use models that describe transcription-
factor binding specificity. Methods for the analysis of
regulatory sequences in sets of co-regulated genes will
be addressed elsewhere.We use a case study of the human
skeletal muscle troponin gene TNNC1 to demonstrate
the specific execution of the described methods. A set of
accompanying online exercisesprovides the means for
researchers to independently explore some of the meth-
ods highlighted in this review (see online links box).
Because the field is rapidly changing, emerging classes of
software will be described in anticipation of the creation
of accessible online analysis tools.

Distal TFBS

Proximal TFBS

Transcription
initiation complex Transcription

initiation
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Chromatin

Figure 1 | Components of transcriptional regulation. Transcription factors (TFs) bind 
to specific sites (transcription-factor binding sites; TFBS) that are either proximal or 
distal to a transcription start site. Sets of TFs can operate in functional cis-regulatory 
modules (CRMs) to achieve specific regulatory properties. Interactions between bound TFs
and cofactors stabilize the transcription-initiation machinery to enable gene expression. 
The regulation that is conferred by sequence-specific binding TFs is highly dependent on the
three-dimensional structure of chromatin.

Figure from (Wasserman & Sandelin, 2004)
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Protein-DNA binding

▶ A transcription factor (TF) is a protein that binds to DNA in a sequence specific manner
▶ E.g. GATA2 protein preferentially recognizes and binds sequences ...[T/A]GATA[A/G]...

▶ TFs can:
▶ Function alone or with other proteins
▶ Recruit other co-factors to bind DNA
▶ Activate or repress gene expression
▶ . . .
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Protein-DNA binding

▶ Transcription factors contain DNA-binding domain(s) (DBDs) that encode their
DNA-binding specificities

Figure from (Kissinger et al., 1990)
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Modeling transcriptional regulation

▶ The goal
▶ An accurate method to measure locations where a specific protein bind DNA

▶ Challenges
▶ Human genome contains about 3 billion (3× 109!) nucleotides
→ Lots of putative binding sites
▶ Human genome is physically about 2 meters long, packed in a cell nucleus with an average

diameter in the range of micrometers
→ Parts of the nucleus are densely packed and thus not available for TFs to interact

▶ Protein-DNA binding can be studied using e.g.
▶ Biophysics: all atom-level modeling
▶ Probabilistic models for biological sequences
▶ Biological experiments + statistical analysis:

▶ ChIP-seq, protein binding microarray, high-throughput SELEX, chromatin accessibility
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ChIP-seq

▶ For any given condition, how do we find the genomic locations where DNA binding
proteins bind?

▶ The current state-of-the-art method: chromatin immunoprecipitation followed by
sequencing (ChIP-seq)

▶ ChIP-seq can identify genomic binding locations for a single DNA binding protein at a time

▶ The basic principle:

1. Use a specific antibody to label a protein of interest
2. Fragment the DNA (with proteins still binding the DNA)
3. ChIP step enriches for those proteins that are bound/labeled by the antibody
4. Extract DNA fragments from the enriched proteins
5. These DNA fragments are then sequenced
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ChIP-seq protocol

Figure from (Visel et al., 2009)

ChIP-seq steps:

▶ Crosslink DNA-binding proteins with DNA
in vivo

▶ Shear the chromatin into small fragments
(e.g. 200bp-1000bp) amenable for
sequencing (sonication)

▶ Immunoprecipitate the DNA-protein
complex with a specific antibody

▶ Reverse the crosslinks

▶ Assay enriched DNA to determine the
sequences bound by the protein of interest
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ChIP-seq protocol again152 Biometrics, March 2011

Figure 1. Details of a ChIPseq experiment. A DNA-binding protein is cross-linked to its in vivo genomic DNA targets, and
the chromatin (a complex of DNA and protein) is isolated (1). The DNA with the bound proteins is extracted from the cells,
and is sheared by sonication into fragments of average length 500–1,000 bp (2). DNA fragments that are cross-linked to the
protein of interest are enriched by immunoprecipitation with an antibody that specifically binds that protein (3–4). After the
immunoprecipitation step, the DNA is separated from the protein (5), the resulting suspension of IP-enriched DNA is size
selected on a gel, and only smaller fragments (e.g., 100–300 bp) are retained (6). Then, the size-selected, IP-enriched DNA is
sequenced to generate millions of short reads, each of which represents either a fragment start or end (7–8). (In an alternative
“paired end” experiment that is rarely used for ChIP-seq, a read is generated from each end of each DNA fragment.) After
read sequences are aligned to a reference genome, read positions can be used to infer binding site positions. (8) shows two
binding sites, with the right-hand site more enriched in DNA fragments. Fragments that do not align with a binding site
reflect biases like nonspecific immunoprecipitation, misalignment, etc. This figure appears in color in the electronic version of
this article.

immunoprecipitated “treatment” sample, and then using an
analysis method that considers the treatment profile rela-
tive to the control profile (Kharchenko et al., 2008; Nix,
Courdy, and Boucher, 2008; Rozowsky et al., 2009). Con-
trol data can be used to help identify false positives, as-
sess numerical background models, and estimate a thresh-

old for segmenting a read density or enrichment profile
in order to identify a subset of significantly enriched re-
gions. Analysis methods are described as “two-sample” when
a control data set is available and as “single sample”
when only treatment data are available. As with ChIP-
chip, there are various ways to generate control samples,

Figure from (Zhang et al., 2011)
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Strand specificity and read density visualization

▶ A“data view”of protein-DNA binding

Nature Reviews | Genetics

Protein or
nucleosome
of interest

Short reads
are aligned

Distribution of tags
is computed

Reference genome

Peak identification
can be performed
on either profile

Profile is generated from 
combined tags
For example, each mapped 
location is extended 
with a fragment of
estimated size

Fragments are added

3Positive strand5

3 Negative strand 5

5  ends of
fragments are
sequenced

Figure 5 | Strand-specific profiles at enriched sites. DNA fragments from a 
chromatin immunoprecipitation experiment are sequenced from the 5  end. 
Therefore, the alignment of these tags to the genome results in two peaks (one on 
each strand) that flank the binding location of the protein or nucleosome of interest. 
This strand-specific pattern can be used for the optimal detection of enriched 
regions. To create an approximate distribution of all fragments, each tag location can 
be extended by an estimated fragment size in the appropriate orientation and the 
number of fragments can be counted at each position.

Poisson model
A probability distribution that 
is often used to model the 
number of random events in a 
fixed interval. Given an average 
number of events in the 
interval, the probability of a 
given number of occurrences 
can be calculated.

alignment, as all subsequent results are based on the 
aligned reads. Owing to the large number of reads, the 
use of conventional alignment algorithms can take hun-
dreds or thousands of processor hours; therefore, a new 
generation of aligners has been developed57, and more 
are expected soon. Every aligner is a balance between 
accuracy, speed, memory and flexibility, and no aligner 
can be best suited for all applications. Alignment for 

ChIP–seq should allow for a small number of mis-
matches due to sequencing errors, SNPs and indels or 
the difference between the genome of interest and the 
reference genome. This is simpler than in RNA–seq, 
for example, in which large gaps corresponding to 
introns must be considered. Popular aligners include: 
Eland, an efficient and fast aligner for short reads that 
was developed by Illumina and is the default aligner on 
that platform; Mapping and Assembly with Qualities 
(MAQ)58, a widely used aligner with a more exhaustive 
algorithm and excellent capabilities for detecting SNPs; 
and Bowtie59, an extremely fast mapper that is based 
on an algorithm that was originally developed for file 
compression. These methods use the quality score that 
accompanies each base call to indicate its reliability. For 
the SOLiD di-base sequencing technology, in which two 
consecutive bases are read at a time, modified aligners 
have been developed60,61. Many current analysis pipe-
lines discard non-unique tags, but studies involving the 
repetitive regions of the genome27,62–64 require careful 
handling of these non-unique tags.

Identification of enriched regions. After sequenced 
reads are aligned to the genome, the next step is to iden-
tify regions that are enriched in the ChIP sample relative 
to the control with statistical significance.

Several ‘peak callers’ that scan along the genome 
to identify the enriched regions are currently  
available24,26,38,48,65–70. In early algorithms, regions were 
scored by the number of tags in a window of a given 
size and then assessed by a set of criteria based on fac-
tors such as enrichment over the control and minimum 
tag density. Subsequent algorithms take advantage of 
the directionality of the reads71. As shown in FIG. 5, the 
fragments are sequenced at the 5  end, and the loca-
tions of mapped reads should form two distributions, 
one on the positive strand and the other on the negative 
strand, with a consistent distance between the peaks of 
the distributions. In these methods, a smoothed pro-
file of each strand is constructed65,72 and the combined 
profile is calculated either by shifting each distribution  
towards the centre or by extending each mapped position  
into an appropriately oriented ‘fragment’ and then 
adding the fragments together. The latter approach 
should result in a more accurate profile with respect to  
the width of the binding, but it requires an estimate  
of the fragment size as well as the assumption that  
fragment size is uniform.

Given a combined profile, peaks can be scored in sev-
eral ways. A simple fold ratio of the signal for the ChIP 
sample relative to that of the control sample around the 
peak (FIG. 3B) provides important information, but it is 
not adequate. A fold ratio of 5 estimated from 50 and 10 
tags (from the ChIP and control experiments, respec-
tively) has a different statistical significance to the same 
ratio estimated from, for example, 500 and 100 tags. 
A Poisson model for the tag distribution is an effective 
approach that accounts for the ratio as well as the abso-
lute tag numbers27, and it can also be modified to account  
for regional bias in tag density due to the chromatin 
structure, copy number variation or amplification bias67. 
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Figure from (Park, 2009)
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Identification of binding sites from ChIP-seq data

▶ First steps in ChIP-seq data analysis:
▶ Quality control, and short read alignment

▶ Quantify read coverage (also called read density), which refers to“pile-up”of aligned reads
along genome (see previous lectures)

▶ Given read coverages/densities on both strands along genome, the actual data analysis
task involves identification of the protein binding sites

▶ Given the above information about the experimental steps, we should expect to see two
“signal peaks”on opposite DNA strands within a proper distance

→ This analysis is often called“peak detection”
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Identification of binding sites from ChIP-seq data

▶ But how much signal (how many reads) in a putative genomic region is considered enough
to call a protein-DNA interaction site?

▶ What affects the signal strength?

1. Protein binding in the first place
2. Sequencing depth (i.e., total number of sequencing reads)
3. Chromatin accessibility
4. Fragmentation efficiency
5. Mappability (i.e., uniqueness) of a local genomic region

▶ All these aspects affect binding locally, i.e., not uniformly along the whole genome
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ChIP-seq controls

▶ The best way to assess significance of a signal at putative binding sites is to use a control
for ChIP-seq
▶ Input-DNA: sequencing data of the (fragmented) genomic DNA from the same sample

without any antibody/immunoprecipitation
▶ ChIP-seq experiment with an unspecific antibody which does not detect any specific protein

▶ ChIP-seq controls can be used to account for many of the biases (e.g. biases 3–5 listed on
the previous page) which affect the signal strength

▶ Input-DNA is currently considered to be the best control
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Detecting binding sites from ChIP-seq data

▶ Early methods used a single cut-off for signal strength or a log-fold enrichment

score = log
# ChIP-seq reads in a genomic region

# Input DNA reads in a genomic region

Nature Reviews | Genetics
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Figure 3 | Depth of sequencing. A | To determine whether enough tags have been sequenced, a simulation can be 
carried out to characterize the fraction of the peaks that would be recovered if a smaller number of tags had been 
sequenced. In many cases, new statistically significant peaks are discovered at a steady rate with an increasing number 
of tags (solid curve) — that is, there is no saturation of binding sites. However, when a minimum threshold is imposed for 
the enrichment ratio between chromatin immunoprecipitation (ChIP) and input DNA peaks, the rate at which new 
peaks are discovered slows down (dashed curve) — that is, saturation of detected binding sites can occur when only 
sufficiently prominent binding positions are considered. For a given data set, multiple curves corresponding to 
different thresholds can be examined to identify the threshold at which the curve becomes sufficiently flat to meet the 
desired saturation criteria (defined by the intersection of the orange lines on the graph). We refer to such a threshold as 
the minimum saturation enrichment ratio (MSER). The MSER can serve as a measure for the depth of sequencing 
achieved in a data set: a high MSER, for example, might indicate that the data set was undersampled, as only the more 
prominent peaks were saturated (see REF. 48 for details). Ba | A peak that is not statistically significant — the 
enrichment ratio between the ChIP and control experiments is low (1.5) and the number of tag counts (shown under 
the peaks) is also low. Bb | Two ways in which a peak can be statistically significant. On the left, although the number of 
tag counts is low, the enrichment ratio between the ChIP and control experiments is high (4). On the right, the peaks 
have the same enrichment ratio as those in a but have a larger number of tag counts; this example shows that 
continued sequencing might lead to less prominent peaks becoming statistically significant and that there might not 
necessarily be a saturation point after which no further binding sites are discovered.

more and more sites continued to be found at a steady 
pace with additional sequencing (FIG. 3A, lower curve). 
In another study38, human RNA polymerase II targets 
were shown to saturate quickly, but for signal transducer 
and activator of transcription 1 (STAT1), the number 
of targets continued to rise steadily. This suggests that, 
at least in some cases, there might not be a satura-
tion point that can be used to determine the number 
of tags to be sequenced if peaks are found based on  
statistical significance.

However, a saturation point does exist if a fixed 
threshold is imposed on the fold enrichment between 
the peaks in the ChIP experiment and the peaks in the  
control experiment — that is, saturation occurs when 
only prominent peaks (as defined by minimum fold 
enrichment) are considered. When all peaks are  
considered, even peaks with small enrichment can 
become statistically significant as more tags accumulate  
(FIG. 3B) and therefore the number of significant peaks 
may continue to rise with more sequencing. This is  
similar to what happens in genome-wide association 
studies and other genomic investigations in which a 

large sample size increases the statistical power and 
causes features that have small effect sizes to attain sta-
tistical significance. In the study discussed above48, we 
proposed that each ChIP–seq data set could be anno-
tated with a minimal saturated enrichment ratio (MSER) 
— a point at which saturation occurs — to give a sense 
of the sequencing depth achieved. We also found that 
there is a linear relationship between the number of 
reads and the MSER, when properly scaled. This makes 
it possible to predict how many more reads are needed 
when a particular level of MSER is desired. Although 
these concepts and tools should be tested on more 
data sets, they provide a framework for understanding  
depth-of-sequencing issues in ChIP–seq experiments.

Multiplexing. For small genomes, including those of 
Saccharomyces cerevisiae, Caenorhabditis elegans and 
D. melanogaster, the number of reads generated in 
a sequencing unit (for example, one of eight lanes on 
an Illumina Genome Analyzer) may be several times 
greater than the number of reads needed to provide 
sufficient coverage of the genome at a suitable depth 
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only prominent peaks (as defined by minimum fold 
enrichment) are considered. When all peaks are  
considered, even peaks with small enrichment can 
become statistically significant as more tags accumulate  
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— a point at which saturation occurs — to give a sense 
of the sequencing depth achieved. We also found that 
there is a linear relationship between the number of 
reads and the MSER, when properly scaled. This makes 
it possible to predict how many more reads are needed 
when a particular level of MSER is desired. Although 
these concepts and tools should be tested on more 
data sets, they provide a framework for understanding  
depth-of-sequencing issues in ChIP–seq experiments.

Multiplexing. For small genomes, including those of 
Saccharomyces cerevisiae, Caenorhabditis elegans and 
D. melanogaster, the number of reads generated in 
a sequencing unit (for example, one of eight lanes on 
an Illumina Genome Analyzer) may be several times 
greater than the number of reads needed to provide 
sufficient coverage of the genome at a suitable depth 

REVIEWS
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Figure from (Park, 2009)

▶ Current state-of-the-art methods are probabilistic
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Model-based Analysis of ChIP-Seq (MACS)

▶ A commonly used method for
detecting TF binding sites from
ChIP-seq data: MACS (Zhang et al,
2008)

▶ Analyzes each biological sample
separately

▶ Note: here words“sequencing read”
and“tag”are used interchangably

Figure S6. Workflow chart of MACS. 

 

 

 

Figure from (Zhang et al., 2008)
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Model-based Analysis of ChIP-Seq (MACS)

Find model peaks:

▶ Define two parameters, mfoldlow and mfoldhigh, to find genomic regions with high
confidence fold-enrichment

▶ bandwidth = assumed sonicated DNA fragment size

▶ MACS slides 2× bandwidth window across the genome to find genomic regions that
satisfy:

mfoldlow ≤ exp(score) ≤ mfoldhigh

▶ The first inequality identifies high confidence binding sites

▶ The second inequality filters out putative artefacts, such as PCR duplicates
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Model-based Analysis of ChIP-Seq (MACS)

Model the shift size of ChIP-seq tags

▶ Take 1000 high confidence genomic regions (randomly) from the previous step

▶ Separate sequencing reads that are aligned to Watson and Crick

▶ Align the reads by the mid point between their Watson and Crick tag centers

▶ Find d : distance between the modes of the Watson and Crick peaks in the alignment

http://genomebiology.com/2008/9/9/R137 Genome Biology 2008,     Volume 9, Issue 9, Article R137       Zhang et al. R137.3

Genome Biology 2008, 9:R137

MACS model for FoxA1 ChIP-SeqFigure 1
MACS model for FoxA1 ChIP-Seq. (a,b) The 5' ends of strand-separated tags from a random sample of 1,000 model peaks, aligned by the center of their 
Watson and Crick peaks (a) and by the FKHR motif (b). (c) The tag count in ChIP versus control in 10 kb windows across the genome. Each dot 
represents a 10 kb window; red dots are windows containing ChIP peaks and black dots are windows containing control peaks used for FDR calculation. 
(d) Tag density profile in control samples around FoxA1 ChIP-Seq peaks. (e,f) MACS improves the motif occurrence in the identified peak centers (e) and 
the spatial resolution (f) for FoxA1 ChIP-Seq through tag shifting and λlocal. Peaks are ranked by p-value. The motif occurrence is calculated as the 
percentage of peaks with the FKHR motif within 50 bp of the peak summit. The spatial resolution is calculated as the average distance from the summit to 
the nearest FKHR motif. Peaks with no FKHR motif within 150 bp of the peak summit are removed from the spatial resolution calculation.
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Model-based Analysis of ChIP-Seq (MACS)

▶ Shift all reads by d/2 toward the 3’ ends: the most likely protein-DNA interaction sites

▶ An alternative strategy could be to extend all aligned sequencing reads to length d

▶ Remove redundant tags:
▶ Sometimes the same read can be sequenced repeatedly, more than expected from a random

genome-wide tag distribution
▶ Such reads might arise from biases during ChIP-DNA amplification and sequencing library

preparation (PCR duplicates)
▶ These are likely to add noise to the final peak calls
▶ MACS removes duplicate reads in excess of what is warranted by the sequencing depth

(binomial distribution p-value < 10−5)
▶ For example, for the 3.9 million ChIP-seq reads, MACS allows each genomic position to

contain no more than one tag and removes all the redundancies
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Model-based Analysis of ChIP-Seq (MACS)

Identifying the most likely binding sites
▶ Counting process is exactly analogous to that of RNA-seq counting process
▶ Assume: reads are sampled independently from a population with fixed probabilities

(p1, . . . , pN) for all N genomic locations (
∑N

i=1 pi = 1)
▶ Then, the read counts x1, x2, . . . , xN across the genomic locations/windows follow the

multinomial distribution (total number of reads is
∑N

i=1 xi = n)
▶ For a single genomic location i , the read count xi follows the binomial distribution with

p = pi , which can be approximated by the Poisson distribution
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Binomial and Poisson distributions

▶ Recall the definition of the binomial distribution (of a random variable X )

Binomial(k; p, n) = P(X = k) =

(
n

k

)
pk(1− p)n−k

▶ Consider the mean of the binomial E (X ) =
∑n

x=0 x ·P(X = x) = np and denote the mean
by λ

λ = np ⇔ p =
λ

n

▶ Substitute p = λ
n into the binomial distribution and take limit n → ∞
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Binomial and Poisson distributions

▶ We have

lim
n→∞

P(X = k) = lim
n→∞

n!

k!(n − k)!

(
λ

n

)k (
1− λ

n

)n−k

=

(
λk

k!

)
lim

n→∞

n!

(n − k)!

(
1

nk

)(
1− λ

n

)n (
1− λ

n

)−k

=

(
λk

k!

)
lim

n→∞

n(n − 1) · · · (n − k + 1)

nk

(
1− λ

n

)n (
1− λ

n

)−k

=

(
λk

k!

)
lim

n→∞

(
nk + O(nk−1)

nk

)
︸ ︷︷ ︸

→1

(
1− λ

n

)n

︸ ︷︷ ︸
e−λ∗

(
1− λ

n

)−k

︸ ︷︷ ︸
→1

=
λk

k!
e−λ

∗Because limx→∞
(
1 + 1

x

)x
= e
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Binomial and Poisson distributions

▶ Poisson approximation to binomial distribution is accurate when n is large and p is small

▶ Poisson approximation is convenient because is has only a single parameter λ
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Model-based Analysis of ChIP-Seq (MACS)

▶ Let xi denote the number of sequencing reads in the ith position / window in a genome

▶ Each genomic window is analyzed independently

xi ∼ Poisson(·|λBG) =
λxi
BG

xi !
e−λBG , xi = 0, 1, 2, . . .

where λBG is the rate of observing reads in the control sample along the whole genome

▶ MACS linearly scales the total number of sequencing reads in the control experiment
Ncontrol and in the ChIP experiment NChIP, i.e.,

λBG := NChIP/Ncontrol · λBG

▶ Because ChIP-seq data has several bias sources which vary across the genome, it is better
to model the data using a“local”or“dynamic”Poisson

λ
(i)
local = max(λBG, [λ

(i)
1K], λ

(i)
5K, λ

(i)
10K),

where λ
(i)
XK is estimated from the control sample (e.g. input-DNA) using the window of

size XK centered at the ith position ([·] denotes an optional input argument)
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▶ MACS linearly scales the total number of sequencing reads in the control experiment
Ncontrol and in the ChIP experiment NChIP, i.e.,

λBG := NChIP/Ncontrol · λBG

▶ Because ChIP-seq data has several bias sources which vary across the genome, it is better
to model the data using a“local”or“dynamic”Poisson

λ
(i)
local = max(λBG, [λ

(i)
1K], λ

(i)
5K, λ

(i)
10K),

where λ
(i)
XK is estimated from the control sample (e.g. input-DNA) using the window of

size XK centered at the ith position ([·] denotes an optional input argument)
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Model-based Analysis of ChIP-Seq (MACS)

▶ Assessing statistical significance of xi reads (in a genomic region i) using hypothesis
testing
▶ H0: the ith location is not a binding site
▶ H1: the ith location is a binding site

▶ The p-value is the probability of observing xi many reads or more, assuming the null
hypothesis is true:

p − value =
∞∑

k=xi

Poisson(k|λ(i)
local)

▶ For genomic regions for which the null hypothesis is rejected:
▶ The location with the highest pileup of aligned sequencing reads (shifted by d/2) is used as

an estimate of the nucleotide-level binding location: called summit

▶ The ratio between the ChIP-seq read count xi and λ
(i)
local is reported as the

fold enrichment
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Multiple correction in MACS

▶ For a ChIP-seq experiment with controls, MACS empirically estimates the false discovery
rate (FDR)

▶ At each p-value, MACS uses the same parameters to find
▶ ChIP-seq peaks over control, and
▶ Control peaks over ChIP-seq (i.e., an analysis using swapped samples)

▶ The empirical FDR is defined as

empirical FDR =
#control peaks

#ChIP peaks



28/ 39

ChIP-seq peak: Illustration

▶ An illustration of a strong TF binding site

Figure from http://www.nature.com/nmeth/journal/v6/n4/images/nmeth.f.247-F2.jpg
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Summary

▶ ChIP-seq is a powerful way to detect TF binding sites

▶ ChIP-seq method is limited in that
▶ Only a subset of all TFs have a chip-grade antibody
▶ None of the antibodies are perfect
▶ A single experiment will profile a single protein

▶ ChP-seq can be applied to profile practically any protein / protein complex / molecule that
interacts with DNA, assuming an antibody exists:
▶ DNA methylation
▶ RNA polymerase
▶ Histone proteins / nucleosomes
▶ Post-translationally modified histone proteins
▶ . . .
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Contents

▶ Background

▶ ChIP-seq protocol

▶ ChIP-seq data analysis

▶ Applications
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ENCODE project

▶ The ENCODE Project: ENCyclopedia Of DNA Elements

▶ Identify all functional elements in the human and mouse genomes

▶ Large amounts of functional and epigenetic data from several number of cell types/lines



32/ 39

ENCODE project

▶ Large amounts of functional and epigenetic data from several number of cell types/lines

Figure from https://www.encodeproject.org

https://www.encodeproject.org
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ENCODE project

▶ Large amounts of functional and epigenetic data from several number of cell types/lines

Figure from https://www.encodeproject.org

https://www.encodeproject.org
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ENCODE project

Understand non-coding disease associated variants

▶ Co-localization of SNPs in protein-DNA interaction sites

▶ Can e.g. increase/decrease the strength of interaction and thereby affect e.g. gene
transcription

Figure from (The ENCODE Project Consortium, 2012)
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Applications

Understand non-coding disease associated variants
▶ Quantify how SNPs affect chromatin accessibility (and thus TF binding and gene

transcription)

binding (P , 10216; Fig. 2e), indicating that dsQTLs are strong pre-
dictors of changes in occupancy by a range of DNA-binding proteins.

Given that dsQTLs produce sequence-specific changes in chro-
matin accessibility and, frequently, changes in transcription factor
binding, we speculated that a fraction of the dsQTL variants might
also affect expression levels of nearby genes. We examined this by
testing for associations between the most significant variant at each
of the dsQTLs detected by using the 2 kb window size and expression

levels of nearby genes (that is, genes with transcription start sites
(TSSs) within 100 kb) estimated by sequencing RNA from the same
cell lines8. Using this approach, we found that 16% of dsQTL SNPs
were also significantly associated with variation in expression levels of
at least one nearby gene (FDR 5 10%). This represents a huge enrich-
ment over random expectation (450-fold, P= 10216; Fig. 3). One
example of a joint dsQTL–eQTL is illustrated in Fig. 3a, in which a
SNP disrupts an ISRE located in the first intron of the SLFN5 gene,
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Figure 2 | Properties of dsQTLs. a, Aggregated plot of DNase I sensitivity for
high-confidence dsQTLs that lie within the target DHS. Individuals were
separated into the high-sensitivity (blue), heterozygote (green), and low-
sensitivity (red) classes. The shading indicates the bootstrap 95% confidence
intervals. b, The peak density of dsQTLs is very tightly focused around the
target DHS window. c, Total fraction of cis-dsQTLs that fall into different
categories of distance from the target window (x axis) and different annotations
(y axis). The total area of each rectangle is proportional to the estimated number
of dsQTLs in that category. d, Box plot showing distribution of position weight
matrix (PWM) score differences between high-sensitivity and low-sensitivity
dsQTL alleles, respectively. Notches indicate 95% confidence intervals for

median. e, The x axis shows the fraction of sequence reads predicted to carry the
major allele based on the DNase I genotype means; the y axis shows the
observed fraction in ChIP-seq data. The lines show the regression fits for each
factor separately; the numbers in the key show the fraction of sites that are in a
concordant direction for each factor. CTCF, CCCTC binding factor; BATF,
basic leucine zipper transcription factor; BCL11A, B-cell CLL/lymphoma 11A
zinc-finger protein; EBF, early B-cell factor 1; IRF4, interferon regulatory factor
4; POU2F2, POU class 2 homeobox 2; PU1, proviral integration oncogene spi1;
SP1, Sp1 transcription factor; NF-kB, nuclear factor of k light polypeptide gene
enhancer in B-cells 1.
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lie in chromatin regions previously predicted18 to be functional in
lymphoblastoid cell lines: 41% in predicted enhancers, 26% in promoters,
and 10% in insulators, even though those chromatin states together cover
only 6.7% of the genome overall (and 38% of our hypersensitive sites).

We next studied the properties of cis-acting variants that generated
dsQTLs, with the use of a Bayesian hierarchical model that accounted
for the uncertainty about which sites are causal19 (Supplementary
Information). This model obtained unbiased estimates of the average
properties of causal sites even though, because of linkage disequilibrium,
it was typically uncertain which site was causal for any individual dsQTL
(Supplementary Information). As shown in Fig. 2b, c, most dsQTLs
were generated by variants close to the target window. We estimate that
56% of the dsQTLs were due to variants that lay within the same DHSs
and that 67% lay within 1 kb of the target window. dsQTLs that lay more
than 1 kb from the target window were themselves significantly
enriched in non-adjacent DHS windows (2.4-fold compared with
matched random SNPs) and were often associated with changes in
sensitivity in multiple non-adjacent DHS windows (Supplementary
Fig. 15).

One intuitive mechanism for dsQTLs is that these may be caused by
variants that strengthen or weaken individual transcription factor
binding sites, thereby changing transcription factor affinity and local
nucleosome occupancy20–22 and hence DNase I cut rates. Consistent
with this model, an aggregated plot of DNase I sensitivity at dsQTLs
showed a distinct drop in chromatin accessibility around putatively

causal SNPs that was reminiscent of transcription factor binding foot-
prints, especially in the genotypes associated with high sensitivity15–17.

To test the importance of disruption of transcription factor binding
sites as a mechanism underlying dsQTLs, we again turned to the
Bayesian hierarchical model. We used the union of all published foot-
print locations in lymphoblastoid cell lines16,17 and a set of footprints
that we identified from the DNase-seq data reported in this study
(Supplementary Methods). Analysis using the hierarchical model indi-
cated a 3.6-fold enrichment of dsQTLs within transcription factor
binding footprints (P= 10216), controlling for the overall enrichment
within DHSs. In addition, the allele associated with a higher score of
the position weight matrix is typically associated with higher
chromatin accessibility (P= 10216), which is consistent with the
expectation that higher transcription factor binding affinity leads to
more open chromatin (Fig. 2d). Of the dsQTLs that fell within DNase-
seq footprints tied to specific transcription factor motifs (using
CENTIPEDE17), CCCTC binding factor (CTCF), cAMP-response ele-
ment (CRE) and interferon-stimulated response element (ISRE) were
the most enriched, whereas MADS box transcription enhancer factor 2
(MEF2) was significantly depleted.

To further understand the functional consequences of dsQTLs, we
examined ChIP-seq data for nine transcription factors collected by the
ENCODE Project in one or more lymphoblastoid cell lines10,23.
Overall, the alleles that were associated with increased DNase I
sensitivity were highly associated with increased transcription factor
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Figure 1 | Genome-wide identification of dsQTLs and a typical example.
a, Q–Q plots for all tests of association between DNase I cut rates in 100-bp
windows, and variants within 2-kb (green) and 40-kb (black) regions centred
on the target DHS windows. b, Allele-specific analysis of dsQTLs in
heterozygotes. Plotted are the predicted (x axis) and observed (y axis) fractions
of reads carrying the major allele based on the genotype means. c, Example of a

dsQTL (rs4953223). The black line indicates the position of the associated SNP.
d, Box plot showing that rs4953223 is strongly associated with local chromatin
accessibility (P 5 3 3 10213). e, The T allele, which is associated with low
DNase I sensitivity, disrupts the binding motif of a previously identified NF-
kB-binding site at this location14. f, NF-kB ChIP-seq data from ten individuals7

indicates a strong effect of this SNP on NF-kB binding.
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Figures from (Degner et al, 2012)
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Circulating free/tumor DNA

▶ Circulating free DNA (cfDNA) are degraded DNA fragments released to the blood plasma
▶ Circulating tumor DNA (ctDNA) are tumor-derived DNA fragments in the blood plasma
▶ Somatic mutations or epigenetic modifications in these cfDNA fragments can provide a

highly accurate and sensitive non-invasive cancer diagnostics

Figures from https://en.wikipedia.org/wiki/Circulating_tumor_DNA

https://en.wikipedia.org/wiki/Circulating_tumor_DNA
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Circulating free/tumor DNA

▶ ChIP-seq based quantification of DNA methylation shows great potential in cancer
diagnostics

Figures from (Shen et al., 2018)
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Circulating free/tumor DNA

Figures from (Shen et al., 2018)
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