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Transcriptional regulation

» Transcriptional regulation is largely controlled by protein-DNA interactions
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Figure from (Wasserman & Sandelin, 2004)



Transcriptional regulation

» Transcriptional regulation is largely controlled by protein-DNA interactions
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Protein-DNA binding

» A transcription factor (TF) is a protein that binds to DNA in a sequence specific manner
> E.g. GATA2 protein preferentially recognizes and binds sequences ...[T/A]GATA[A/G]...

» TFs can:
» Function alone or with other proteins
» Recruit other co-factors to bind DNA

> Activate or repress gene expression
> ...



Protein-DNA binding

» Transcription factors contain DNA-binding domain(s) (DBDs) that encode their
DNA-binding specificities

Figure from (Kissinger et al., 1990)



Modeling transcriptional regulation

» The goal
» An accurate method to measure locations where a specific protein bind DNA
» Challenges
» Human genome contains about 3 billion (3 x 10°!) nucleotides
— Lots of putative binding sites
» Human genome is physically about 2 meters long, packed in a cell nucleus with an average
diameter in the range of micrometers
— Parts of the nucleus are densely packed and thus not available for TFs to interact



Modeling transcriptional regulation

» The goal
» An accurate method to measure locations where a specific protein bind DNA
» Challenges
» Human genome contains about 3 billion (3 x 10°!) nucleotides
— Lots of putative binding sites
» Human genome is physically about 2 meters long, packed in a cell nucleus with an average
diameter in the range of micrometers
— Parts of the nucleus are densely packed and thus not available for TFs to interact
» Protein-DNA binding can be studied using e.g.
> Biophysics: all atom-level modeling

> Probabilistic models for biological sequences
> Biological experiments + statistical analysis:

» ChlIP-seq, protein binding microarray, high-throughput SELEX, chromatin accessibility
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ChlP-seq

» For any given condition, how do we find the genomic locations where DNA binding
proteins bind?

» The current state-of-the-art method: chromatin immunoprecipitation followed by
sequencing (ChlP-seq)

» ChlP-seq can identify genomic binding locations for a single DNA binding protein at a time

» The basic principle:
1. Use a specific antibody to label a protein of interest
Fragment the DNA (with proteins still binding the DNA)
ChIP step enriches for those proteins that are bound/labeled by the antibody
Extract DNA fragments from the enriched proteins
These DNA fragments are then sequenced
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ChlP-seq protocol
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Figure from (Visel et al., 2009)



ChIP-seq protocol again
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Strand specificity and read density visualization

> A “data view” of protein-DNA binding
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|dentification of binding sites from ChlP-seq data

» First steps in ChlP-seq data analysis:
» Quality control, and short read alignment

» Quantify read coverage (also called read density), which refers to “pile-up” of aligned reads
along genome (see previous lectures)

> Given read coverages/densities on both strands along genome, the actual data analysis
task involves identification of the protein binding sites

» Given the above information about the experimental steps, we should expect to see two
“signal peaks” on opposite DNA strands within a proper distance

— This analysis is often called “peak detection”



|dentification of binding sites from ChlP-seq data

» But how much signal (how many reads) in a putative genomic region is considered enough
to call a protein-DNA interaction site?

» What affects the signal strength?

1.
2.
3.
4.
5.

Protein binding in the first place

Sequencing depth (i.e., total number of sequencing reads)
Chromatin accessibility

Fragmentation efficiency

Mappability (i.e., uniqueness) of a local genomic region

» All these aspects affect binding locally, i.e., not uniformly along the whole genome



ChlP-seq controls

» The best way to assess significance of a signal at putative binding sites is to use a control
for ChIP-seq
» Input-DNA: sequencing data of the (fragmented) genomic DNA from the same sample
without any antibody/immunoprecipitation
» ChlIP-seq experiment with an unspecific antibody which does not detect any specific protein
» ChlP-seq controls can be used to account for many of the biases (e.g. biases 3-5 listed on
the previous page) which affect the signal strength

» Input-DNA is currently considered to be the best control



Detecting binding sites from ChIP-seq data

» Early methods used a single cut-off for signal strength or a log-fold enrichment

# ChlP-seq reads in a genomic region
score = log

# Input DNA reads in a genomic region

Enrichment
ratio: 4
Enrichment
ratio: 1.5 ChiP 20

Control — 10—~ Control

Figure from (Park, 2009)

» Current state-of-the-art methods are probabilistic



Model-based Analysis of ChIP-Seq (MACS)

» A commonly used method for
detecting TF binding sites from
ChlP-seq data: MACS (Zhang et al,
2008)

» Analyzes each biological sample
separately

» Note: here words “sequencing read”
and “tag"” are used interchangably
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Figure from (Zhang et al., 2008)



Model-based Analysis of ChIP-Seq (MACS)

Find model peaks:

>

>
>

Define two parameters, mfoldio, and mfoldyien, to find genomic regions with high
confidence fold-enrichment

bandwidth = assumed sonicated DNA fragment size
MACS slides 2 x bandwidth window across the genome to find genomic regions that
satisfy:
mfoldiey < exp(score) < mfoldpign
The first inequality identifies high confidence binding sites
The second inequality filters out putative artefacts, such as PCR duplicates



Model-based Analysis of ChIP-Seq (MACS)

Model the shift size of ChlP-seq tags
» Take 1000 high confidence genomic regions (randomly) from the previous step
» Separate sequencing reads that are aligned to Watson and Crick
> Align the reads by the mid point between their Watson and Crick tag centers
» Find d: distance between the modes of the Watson and Crick peaks in the alignment

—— Watson tags
—— Crick tags

d=126 bp

Tag percentage (%)
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Location with respect to the center of Watson and Crick peaks (bp)
Figure from (Zhang et al., 2008)



Model-based Analysis of ChIP-Seq (MACS)

» Shift all reads by d/2 toward the 3" ends: the most likely protein-DNA interaction sites

» An alternative strategy could be to extend all aligned sequencing reads to length d

» Remove redundant tags:

>

>

Sometimes the same read can be sequenced repeatedly, more than expected from a random
genome-wide tag distribution

Such reads might arise from biases during ChIP-DNA amplification and sequencing library
preparation (PCR duplicates)

These are likely to add noise to the final peak calls

MACS removes duplicate reads in excess of what is warranted by the sequencing depth
(binomial distribution p-value < 107°)

For example, for the 3.9 million ChIP-seq reads, MACS allows each genomic position to
contain no more than one tag and removes all the redundancies



Model-based Analysis of ChIP-Seq (MACS)

Identifying the most likely binding sites
» Counting process is exactly analogous to that of RNA-seq counting process
» Assume: reads are sampled independently from a population with fixed probabilities
(p1,--.,pn) for all N genomic locations (le\lzl pi=1)
» Then, the read counts xi, X, ..., xy across the genomic locations/windows follow the
multinomial distribution (total number of reads is Zf\’:l X; = n)

» For a single genomic location 7, the read count x; follows the binomial distribution with
p = pi, which can be approximated by the Poisson distribution

CWp-seg s(;.uaw\c'w\a reods

aligning Yy oand
2 st rands
Xl sk %P xR K=t
jemome } + t ——
f P Pz » €3 (" P
genomic z/
wWindows f . S
eaq. 500 ~t DNVA woacules rz\ﬂ""\vtn Pf"fm

e v pa x =1
€1, Py P o € ‘»"'\P



Binomial and Poisson distributions

» Recall the definition of the binomial distribution (of a random variable X)
: : m\ k n—k
Binomial(k; p,n) = P(X = k) = <k>p (1-p)

> Consider the mean of the binomial E(X) =Y""_,x- P(X = x) = np and denote the mean
by A

» Substitute p = % into the binomial distribution and take limit n — oo



Binomial and Poisson distributions

> We have
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Binomial and Poisson distributions

» Poisson approximation to binomial distribution is accurate when n is large and p is small

> Poisson approximation is convenient because is has only a single parameter A



Model-based Analysis of ChIP-Seq (MACS)

> Let x; denote the number of sequencing reads in the jth position / window in a genome
» Each genomic window is analyzed independently
Xi

A
x; ~ Poisson(-|Apg) = i?e”‘BG, x;=0,1,2,...

i

where A is the rate of observing reads in the control sample along the whole genome



Model-based Analysis of ChIP-Seq (MACS)

> Let x; denote the number of sequencing reads in the jth position / window in a genome

» Each genomic window is analyzed independently
AR
x; ~ Poisson(-|Apg) = i?e”‘BG, x;=0,1,2,...
Xj:
where A is the rate of observing reads in the control sample along the whole genome

» MACS linearly scales the total number of sequencing reads in the control experiment
Neontrol @nd in the ChIP experiment Ncpp, i.e.,

ABG 1= Ncnip/Neontrol - ABG



Model-based Analysis of ChIP-Seq (MACS)

> Let x; denote the number of sequencing reads in the jth position / window in a genome

» Each genomic window is analyzed independently

. e
x; ~ Poisson(-|Apg) = L?e”‘BG, x;=0,1,2,...
Xj:
where A is the rate of observing reads in the control sample along the whole genome

» MACS linearly scales the total number of sequencing reads in the control experiment
Neontrol @nd in the ChIP experiment Ncpp, i.e.,

ABG 1= Ncnip/Neontrol - ABG

» Because ChlP-seq data has several bias sources which vary across the genome, it is better
to model the data using a “local” or “dynamic” Poisson

MY = max(Asc, AL AT ABk),

local —

)

where )\géK is estimated from the control sample (e.g. input-DNA) using the window of
size XK centered at the ith position ([-] denotes an optional input argument)



Model-based Analysis of ChIP-Seq (MACS)

> Assessing statistical significance of x; reads (in a genomic region i) using hypothesis
testing

» Hy: the ith location is not a binding site
» H;: the ith location is a binding site

» The p-value is the probability of observing x; many reads or more, assuming the null
hypothesis is true:

p — value = Z Poisson(k ‘/\l((l;)cal)

k:X,'



Model-based Analysis of ChIP-Seq (MACS)

> Assessing statistical significance of x; reads (in a genomic region i) using hypothesis
testing
» Hy: the ith location is not a binding site
» H;: the ith location is a binding site
» The p-value is the probability of observing x; many reads or more, assuming the null
hypothesis is true:

p — value = Z Poisson(k ‘/\l((l;)cal)

k:X,'

» For genomic regions for which the null hypothesis is rejected:
» The location with the highest pileup of aligned sequencing reads (shifted by d/2) is used as
an estimate of the nucleotide-level binding location: called summit

(1)

loca

» The ratio between the ChlP-seq read count x; and A
fold_enrichment

| is reported as the



Multiple correction in MACS

» For a ChlP-seq experiment with controls, MACS empirically estimates the false discovery
rate (FDR)
» At each p-value, MACS uses the same parameters to find

» ChlIP-seq peaks over control, and
» Control peaks over ChlP-seq (i.e., an analysis using swapped samples)

» The empirical FDR is defined as

#control peaks

irical FDR =
crprica #ChIP peaks



ChlP-seq peak: lllustration

» An illustration of a strong TF binding site
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Figure from http://www.nature.com/nmeth/journal /v6/n4 /images/nmeth.f.247-F2.jpg




Summary

» ChlIP-seq is a powerful way to detect TF binding sites

» ChlP-seq method is limited in that

» Only a subset of all TFs have a chip-grade antibody
» None of the antibodies are perfect
> A single experiment will profile a single protein

» ChP-seq can be applied to profile practically any protein / protein complex / molecule that
interacts with DNA, assuming an antibody exists:
» DNA methylation
> RNA polymerase
» Histone proteins / nucleosomes
> Post-translationally modified histone proteins
>
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ENCODE project

» The ENCODE Project: ENCyclopedia Of DNA Elements
» |dentify all functional elements in the human and mouse genomes

» Large amounts of functional and epigenetic data from several number of cell types/lines



ENCODE project

> Large amounts of functional and epigenetic data from several number of cell types/lines
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https://www.encodeproject.org

ENCODE project

» Large amounts of functional and epigenetic data from several number of cell types/lines
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Figure from https://www.encodeproject.org
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https://www.encodeproject.org

ENCODE project

Understand non-coding disease associated variants

» Co-localization of SNPs in protein-DNA interaction sites

» Can e.g. increase/decrease the strength of interaction and thereby affect e.g. gene

transcription
c Human Feb. 2009 (GRCh37/hg19) ChrS: 39274501-40819500 (1,545,000 bp)
©hrd: - 3g500000 40000000| 40500000|
P
9 HiHH = 08
DAB2 {4 et
BC026261 |
PRKAAT IH
GWAS catalogue | | -1
@ Crohn’s disease rs4613763 rs17234657 rs11742570 rs6896969 rs1373632 rs92092777
Ulcerative colitis T P 1992660 ? ? *
® Multiple sclerosis 156451493 |
HUVEC GATA2
factors HUVEC input o ey e g o
HUVEG A Y
DNase | Tl — e _A_L_LJL__..__. S U
I _.__AJ.L_JL__.____ o S

Figure from (The ENCODE Project Consortium, 2012)



Applications

Understand non-coding disease associated variants

» Quantify how SNPs affect chromatin accessibility (and thus TF binding and gene
transcription)

a  Aggregate DNase-seq profile at dsQTLs
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Figures from (Degner et al, 2012)



Circulating free/tumor DNA

» Circulating free DNA (cfDNA) are degraded DNA fragments released to the blood plasma
» Circulating tumor DNA (ctDNA) are tumor-derived DNA fragments in the blood plasma
» Somatic mutations or epigenetic modifications in these cfDNA fragments can provide a

highly accurate and sensitive non-invasive cancer diagnostics
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Figures from https://en.wikipedia.org/wiki/Circulating_tumor_DNA
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https://en.wikipedia.org/wiki/Circulating_tumor_DNA

Circulating free/tumor DNA

» ChIP-seq based quantification of DNA methylation shows great potential in cancer
diagnostics
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Figures from (Shen et al., 2018)



Circulating free/tumor DNA
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Figures from (Shen et al., 2018)
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