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Motivation 1

▶ Consider e.g. a gene expression analysis between two groups:
▶ One of the most common use of gene expression studies (e.g. RNA-seq)
▶ Determine which genes are differentially expressed between two classes, say healthy

and diseased groups

▶ At the end, statistical analysis of the experimental data gives:
▶ A list of differentially expressed genes between the two classes
▶ This list can be empty, short (tens), long (hundreds), or very long (thousands)

▶ Nobody knows/remembers the function of all genes
▶ E.g. human genome contains around 20,000 genes
▶ Interpreting/Understanding such gene lists is challenging

→ Interpret the resulting gene list(s) collectively (not gene-by-gene) with the help of
computational tools
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Motivation 2

▶ If only a few replicate measurements exist, then gene-wise differential expression
tests give results that
▶ Have low statistical power and, thus, possibly contain only a few genes
▶ May be unreliable at the level of individual genes

▶ Interpreting the resulting gene set collectively can help making the correct
biological conclusion

▶ Can switch back and forth between gene level and gene set level
analysis/interpretation, depending on their purpose:
▶ For choosing a drug target we need gene level information
▶ For understanding e.g. global dysregulation in complex diseases, gene sets can be

more helpful
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Interpreting the list of differentially expressed genes

▶ A typical goal: find the biological processes that are affected between the study
groups, e.g., between healthy and diseased samples

▶ Address this question by assessing the genes collectively that are differentially
expressed between the groups

▶ Examples of biological processes:
▶ Protein translation
▶ Cell death
▶ Signal transduction
▶ Response to stress
▶ . . .

▶ Biological processes can be described at multiple levels
▶ Higher-level = more general process: multitude of genes
▶ Lower-level = more detailed process: a few specific genes
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Assigning genes to ontologies

▶ Gene Ontology (GO): The GO project is a collaborative, international effort to
address the need for consistent and systematic functional annotation of gene
products: http://www.geneontology.org/

http://www.geneontology.org/
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Assigning genes to ontologies

Figure: http://www.geneontology.org/

http://www.geneontology.org/


8/ 36

Assigning genes to ontologies

GO offers three separate ontologies (term hierarchies):

1. Biological process: describes a biological objective to which the gene or gene
product contributes
▶ E.g. cell growth, cell death, signal transduction, protein translation

2. Molecular function: refers to the biochemical activity of gene products
▶ E.g. enzyme, transporter, ligand

3. Cellular component: specifies in which compartment or location of a cell the
active gene product can be found
▶ E.g. ribosome, nuclear membrane, Golgi apparatus
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Ontology structure example

▶ A set of terms under the biological process node pigmentation

Figure from http://www.geneontology.org/

http://www.geneontology.org/
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Constructing gene categories from GO terms

▶ The set of genes S associated with any particular GO term can be considered as a
gene category or gene set of interest for subsequent analysis

▶ For example: Gene ontology term (GO:0008219) called Cell Death contains
genes:
▶ PDCD2L, BAD, DELE1, CD274, . . .
▶ Altogether 1103 genes for Homo sapiens
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Other annotation resources

▶ MSigDB (Molecular signatures database)
▶ Sets based on curated pathway information from 9 databases
▶ Sets based on DNA motif occurrence
▶ Sets based on computation analysis/predictions (expression similarity etc.)
▶ Sets based on GO
▶ Sets based on chromosomal location

▶ PANTHER database (mainly signaling pathways)
▶ KEGG and KEGG pathways

▶ Molecular interaction and reaction networks
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

Figure from http://www.genome.jp/kegg/

http://www.genome.jp/kegg/
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Enrichment of a gene set

▶ Assume we have obtained a list of genes G0 e.g. from statistical analysis of
RNA-seq data
▶ The gene list contain genes that, based on our data, are statistically significantly

differentially expressed e.g. between our two study groups

▶ Question: is a gene ontology term overrepresented among the genes in the gene
list?
▶ A gene ontology term corresponds to a set of genes S
▶ In other words, do the genes in the gene set S occur in the list of statistically

significant genes G0 more often than would be expected by chance

▶ The most common setting for enrichment analysis
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Enrichment of a gene set

▶ Assume we want to evaluate the enrichment for a gene category (e.g. a biological
process) S among differentially expressed genes G0

▶ G : all genes, |G | = N in total
▶ G0 ⊆ G : differentially expressed genes, |G0| = n ≤ N (often n ≪ N)
▶ S ⊆ G : a known set of genes annotated with a biological process, |S | = m ≤ N
▶ k: genes that are differentially expressed and belong to S , i.e., |G0 ∩ S | = k

▶ Null hypothesis H0 : Assume that our differentially expressed genes are
independent of the biological process

▶ Test statistic k: the number of genes that are in both S and G0, i.e. overlap
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Enrichment of a gene set

▶ Under the null, the probability of having overlap of exactly k genes, by chance,
can be computed from the hypergeometric distribution

P(overlap = k) =

(N−m
n−k

)(m
k

)(N
n

)

▶ Alternative hypothesis H1 : differentially expressed genes are not independent of
the biological process

▶ The probability of an overlap of at least k genes is

p-value = P(overlap ≥ k) =

min{n,m}∑
l=k

(N−m
n−l

)(m
l

)(N
n
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Enrichment of a gene set: illustration

▶ An example
▶ 100 genes in total, N = 100
▶ 20 are differentially expressed, n = 20
▶ S contains 10 genes, m = 10
▶ 5 differentially expressed genes are in S , k = 5
▶ P(overlap = 5) = 0.0215
▶ P(overlap ≥ 5) =

∑10
i=5 P(overlap = i) = 0.0255



18/ 36

Enrichment of a gene set: illustration 2

▶ Another example
▶ 20000 genes in total, N = 20000
▶ 500 are differentially expressed, n = 500
▶ S contains 100 genes, m = 100
▶ 10 differentially expressed genes are in S , k = 10
▶ P(overlap = 10) = 0.0001611
▶ P(overlap ≥ 10) =

∑100
i=10 P(overlap = i) = 0.00020185
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Enrichment of a gene set

▶ The above hypothesis testing corresponds to the Fisher’s exact test of association

▶ It is simple, accurate and can be applied in various contexts

▶ On the other hand, it requires setting a p-value threshold or FDR threshold for
differential expression, and assumes that observations for each gene are
independent

▶ Several different computational methods have been proposed for enrichment
analysis
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Gene set enrichment analysis (GSEA)

▶ Aim of GSEA: determine whether the members of S are randomly distributed
throughout a ranked list L or primarily found at the top or bottom of the list

▶ No-cutoff strategy: find enriched annotations (gene categories) without having to
specify a threshold for differentially expressed genes
▶ Uses the whole information obtained from gene expression experiments

▶ Basic idea in gene set enrichment tests:
▶ Start from ranked list of all genes (from up-regulated to down-regulated) and

compute enrichment score for each gene set
▶ Estimate statistical significance (p-value) of an enrichment score by permuting

phenotype labels (e.g. randomly shuffle the case-control label of a subject) and
recomputing differentially expressed genes as well as the enrichment score
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Gene set enrichment analysis (GSEA)

1. Rank genes according to differential expression, set a running-sum statistic to 0

2. Compute Enrichment Score (ES):
▶ Go down the gene list and

▶ Increment a running-sum statistic if the gene belongs to set S
▶ Decrease the running-sum statistic a gene if not in S

▶ ES is the maximum deviation from 0 (a type of a Kolmogorov-Smirnov statistic)

3. Calculate empirical null distribution for ES:
▶ Permute phenotype labels R times
▶ Re-compute ES for each permutation: ES(1), . . . ,ES(R)

4. Compute empirical p-value from empirical null distribution by counting the
number of times the ES score is as large or even larger than for the observed data

p − value =
1

R

R∑
i=1

I (ES(i) ≥ ES)

5. Repeat the analysis for all sets S , adjust for multiple hypothesis testing
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Gene set enrichment analysis (GSEA)

Figure from (Subramanian et al., 2005)
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Example: GSEA in lung cancer studies

▶ Example: Two independent studies on lung cancer. Identify genes that are
differentially expressed between group A and group B
▶ Group A: good clinical outcome
▶ Group B: poor clinical outcome

▶ Looking at individual genes, the two studies have little in common (12 genes
among top 100 genes)

▶ However, there is large overlap between significantly enriched gene sets
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Example: GSEA in lung cancer studies

by experimental induction of a temperature-sensitive allele of p53
in a lung cancer cell line; (iii) an annotated collection of genes
induced by radiation, whose response is known to involve p53; (iv)
an annotated collection of genes induced by hypoxia, which is
known to act through a p53-mediated pathway distinct from the
response pathway to DNA damage; and (v) an annotated collection
of genes encoding heat shock-protein signaling pathways that
protect cells from death in response to various cellular stresses.

The complementary analysis (p53!"p53#) identifies one signif-
icant gene set: genes involved in the Ras signaling pathway.
Interestingly, two additional sets that fall just short of the signifi-
cance threshold contain genes involved in the Ngf and Igf1 signaling
pathways. To explore whether these three sets reflect a common
biological function, we examined the leading-edge subset for each
gene set (defined above). The leading-edge subsets consist of 16, 11,
and 13 genes, respectively, with each containing four genes encod-
ing products involved in the mitogen-activated protein kinase

(MAPK) signaling subpathway (MAP2K1, RAF1, ELK1, and
PIK3CA) (Fig. 3). This shared subset in the GSEA signal of the
Ras, Ngf, and Igf1 signaling pathways points to up-regulation of this
component of the MAPK pathway as a key distinction between the
p53! and p53# tumors. (We note that a full MAPK pathway
appears as the ninth set on the list.)

Acute Leukemias. We next sought to study acute lymphoid leukemia
(ALL) and acute myeloid leukemia (AML) by comparing gene
expression profiles that we had previously obtained from 24 ALL
patients and 24 AML patients (16).

We applied GSEA to the cytogenetic gene sets (C1), expecting
that chromosomal bands showing enrichment in one class would
likely represent regions of frequent cytogenetic alteration in one of
the two leukemias. The ALL"AML comparison yielded five gene
sets (Table 2), which could represent frequent amplification in ALL
or deletion in AML. Indeed, all five regions are readily interpreted
in terms of the current knowledge of leukemia.

The 5q31 band is consistent with the known cytogenetics of
AML. Chromosome 5q deletions are present in most AML pa-
tients, with the critical region having been localized to 5q31 (17).
The 17q23 band is a site of known genetic rearrangements in
myeloid malignancies (18). The 13q14 band, containing the RB
locus, is frequently deleted in AML but rarely in ALL (19). Finally,
the 6q21 band contains a site of common chromosomal fragility and
is commonly deleted in hematologic malignancies (20).

Interestingly, the remaining high scoring band is 14q32. This
band contains the Ig heavy chain locus, which includes "100 genes
expressed almost exclusively in the lymphoid lineage. The enrich-
ment of 14q32 in ALL thus reflects tissue-specific expression in the
lineage rather than a chromosomal abnormality.

The reciprocal analysis (AML"ALL) yielded no significantly
enriched bands, which likely reflects the relative infrequency of
deletions in ALL (21). The analyses with the cytogenetic gene sets
thus show that GSEA is able to identify chromosomal aberrations
common in particular cancer subtypes.

Comparing Two Studies of Lung Cancer. A goal of GSEA is to provide
a more robust way to compare independently derived gene expres-
sion data sets (possibly obtained with different platforms) and
obtain more consistent results than single gene analysis. To test
robustness, we reanalyzed data from two recent studies of lung
cancer reported by our own group in Boston (22) and another group
in Michigan (23). Our goal was not to evaluate the results reported
by the individual studies, but rather to examine whether common
features between the data sets can be more effectively revealed by
gene-set analysis rather than single-gene analysis.

Both studies determined gene-expression profiles in tumor sam-
ples from patients with lung adenocarcinomas (n $ 62 for Boston;
n $ 86 for Michigan) and provided clinical outcomes (classified
here as ‘‘good’’ or ‘‘poor’’ outcome). We found that no genes in
either study were strongly associated with outcome at a significance
level of 5% after correcting for multiple hypotheses testing.

From the perspective of individual genes, the data from the two
studies show little in common. A traditional approach is to compare

Table 2. Summary of GSEA results with FDR < 0.25

Gene set FDR

Data set: Lymphoblast cell lines
Enriched in males

chrY %0.001
chrYp11 %0.001
chrYq11 %0.001
Testis expressed genes 0.012

Enriched in females
X inactivation genes %0.001
Female reproductive tissue expressed genes 0.045

Data set: p53 status in NCl-60 cell lines
Enriched in p53 mutant

Ras signaling pathway 0.171
Enriched in p53 wild type

Hypoxia and p53 in the cardiovascular system %0.001
Stress induction of HSP regulation %0.001
p53 signaling pathway %0.001
p53 up-regulated genes 0.013
Radiation sensitivity genes 0.078

Data set: Acute leukemias
Enriched in ALL

chr6q21 0.011
chr5q31 0.046
chr13q14 0.057
chr14q32 0.082
chr17q23 0.071

Data set: Lung cancer outcome, Boston study
Enriched in poor outcome

Hypoxia and p53 in the cardiovascular system 0.050
Aminoacyl tRNA biosynthesis 0.144
Insulin upregulated genes 0.118
tRNA synthetases 0.157
Leucine deprivation down-regulated genes 0.144
Telomerase up-regulated genes 0.128
Glutamine deprivation down-regulated genes 0.146
Cell cycle checkpoint 0.216

Data set: Lung cancer outcome, Michigan study
Enriched in poor outcome

Glycolysis gluconeogenesis 0.006
vegf pathway 0.028
Insulin up-regulated genes 0.147
Insulin signalling 0.170
Telomerase up-regulated genes 0.188
Glutamate metabolism 0.200
Ceramide pathway 0.204
p53 signalling 0.179
tRNA synthetases 0.225
Breast cancer estrogen signalling 0.250
Aminoacyl tRNA biosynthesis 0.229

For detailed results, see Table 4, which is published as supporting informa-
tion on the PNAS web site.

Fig. 3. Leading edge overlap for p53 study. This plot shows the ras, ngf, and
igf1 gene sets correlated with P53! clustered by their leading-edge subsets
indicated in dark blue. A common subgroup of genes, apparent as a dark
vertical stripe, consists of MAP2K1, PIK3CA, ELK1, and RAF1 and represents a
subsection of the MAPK pathway.

15548 ! www.pnas.org"cgi"doi"10.1073"pnas.0506580102 Subramanian et al.

Figure from (Subramanian et al., 2005)
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Understanding disease associated genetics variants

▶ Lecture #3 described methods to detecting SNPs using high-throughput
sequencing technology

▶ Once genotyping has been done for a large cohort of individuals, statistical
genetics methods are used to identify SNPs that are associated with the condition
▶ These are generally called as genome-wide association studies (GWAS), and will be

covered in other courses
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Understanding disease associated genetics variants

▶ An illustration of GWAS studies

Figure from http://genetics.thetech.org/ask-a-geneticist/how-gwas-works

http://genetics.thetech.org/ask-a-geneticist/how-gwas-works
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Understanding disease associated genetics variants

▶ Lets assume that we have successfully identified SNPs that are associated with a
condition/disease

▶ Individual disease-associated SNPs that overlap protein-coding genes:
▶ Can be studied further by analyzing individual proteins, experimentally or

computationally, to understand how the non-synonymous mutations (missense,
nonsense) affect the protein function

▶ Alternatively, computational methods can be used to assess whether
disease-associated loci as a group (i.e., all detected SNPs) are enriched in
▶ Biological pathways
▶ Genomic annotations in non-coding genome
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Understanding disease associated genetics variants

▶ A computational strategy proceeds as follows:
▶ Choose a distance threshold (e.g. 100kb)
▶ Associate each disease-associated SNP to those genes that are within the distance

threshold from the SNP (along the linear sequence)
▶ This will give a set of disease-associated genes S

Enrichment quantification of SNPs and their proxies in 
genomic regions 

- E.g. overlap of trait specific SNPs in genomic regions of interest can 
yield profound insight into genomic data sets 

- Naive approach: randomize genomic regions  

- Causal SNPs generally unknown – the causal SNPs may equally 
well be the SNPs which are in LD

Genome

LD block

(Nousiainen K, Kanduri K, et al, in progress)

Genome

GWAS SNPs

Genic regions

Distance 
threshold

Disease-associated genes
An illustration of quantifying enrichment of GWAS SNPs at genic regions.
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Understanding disease associated genetics variants

▶ This gene set S can be interpreted as any gene ontology category and its
enrichment among differentially expressed genes can be analyzed using the same
methods that we just studied

▶ Alternatively, the set of disease-associated genes can be interpreted as a set of
differentially expressed genes G and its enrichment among gene ontologies can be
assessed using the Fisher’s exact test of association
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Understanding disease associated genetics variants

▶ Another computational strategy proceeds by randomizing SNPs
▶ Challenges in a straightforward (=uniform) randomization:

▶ SNPs have a greater likelihood to overlap long genes and regions of strong linkage
disequilibrium (LD)

▶ These biases can lead to false positive findings
▶ For instance, brain pathways typically containing large genes and thus they likely

appear to be overrepresented in GWAS loci
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Understanding disease associated genetics variants

▶ The SNPsnap tool samples randomly SNPs with similar genetic properties as a set
of query SNPs (i.e., the disease-associated SNPs)

▶ Random SNPs are matched based on
▶ Minor allele frequency
▶ Distance to nearest gene
▶ Number of nearby genes (gene density), and
▶ Number of SNPs in LD (“LD buddies”)
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Understanding disease associated genetics variants

▶ An illustration of SNPsnap tool

(Nousiainen K, Kanduri K, et al, in progress)

Genome

GWAS SNPs

Genomic regions
Ra

nd
om

iz
e 

R 
tim

es

…

An illustration of quantifying enrichment of GWAS SNPs at genic regions: SNPsnap randomization.
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Understanding disease associated genetics variants

▶ Empirical enrichment analysis for GWAS SNPs among genomic regions (=a gene
ontology set)

1. Count the overlap C of the original GWAS SNPs with the genomic regions
2. Construct an empirical null distribution:

▶ Randomize the GWAS SNPs R times using SNPsnap
▶ For each randomized SNP set, count the overlap with the genomic regions,

C (i), i ∈ {1, . . . ,R}
3. Compute empirical p-value from the empirical null distribution by counting the

number of times randomized SNP set has equal or larger overlap than the observed
overlap

p − value =
1

R

R∑
i=1

I (C (i) ≥ C )

4. Repeat the analysis for all genomic regions, adjust for multiple hypothesis testing
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