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Chapter 8 Model Predictive Control (MPC)

* Introduction to Model Predictive Control Literature:

* Wang, L, Model Predictive Control System Design and
Implementation Using MATLAB, Springer, 2009.

* Maciejowski, J. M., Predictive Control, with Constraints,
Pearson Education, 2002.

* Rawlings, J. B., and Mayne, D. Q., Model Predictive Control
Theory and Design, Nob Hill, 2009.
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Model Predictive Control

Can deal with constraints in a natural way

The basic idea is easy to understand

It extends to multivariable plants naturally

Generally more powerful than traditional PID control
Integrates optimal control, stochastic control, control of
processes with dead-time, multivariable control, control
that can handle constraints.

A practical methodology, which has numerous technical
applications, especially in the process industry.

It was earlier neglected and critisized by the control
engineering community (lack of stability proofs,
robustness etc.); this situation has changed due to
progress in theory.
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The main characteristics in MPC

A

An internal model capable of fast simulation

A reference trajectory which defines the desired
closed-loop behaviour

The receding horizon principle

Future input trajctory by a finite number of control
moves

On-line optimization (possibly constrained)
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Model Predictive Control

Reference trajectory

Past inputs
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The Receding horizon principle

A

u(t+k|t)

vty
/—/ N
- =
t-1 t t+1 t+2 .. t+k - t+N

The output is predicted over the prediction

horizon. Control moves are calculated over

the control horizon by optimizing a criterion.
Aapouniersity . Only the first move is realized; then the
T process is repeated.




* Alot of different formulations can be found in the
literature (MPHC, MAC, DMC, EHAC, EPSAC, GPC etc.
etc.)

* Maciejowski’s book has information on commercial MPC

products, e.g. DMCPIus, RMPCT, Connoisseur, PFC,
HIECON, 3dMPC, Process Perfecter.
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HP
Vi)=Y |2k +i
i=H,

k) —r(k+i|k)

N H,-1
L zﬂ ||An(k +ilk)

R(i)

Prediction horizon H » -Q@).R() positive semidefinite
Control horizon H,

Control move Au 1t 1s assumed that the penalty is on the control
moves, not controls as such

Note that if H, >1 there is no penalty immediately at time £.

The states are usually not measurable; instead we have predictions
i(k +1|k) meaning that we estimate the state by using data up to
time k.
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Model predictive control (MPC)

* Note that there are different formalisms to pose the
MPC problem.

» Also, there exist software packages to do the job.
The problem in using software packages "blindly” is the
lack of insight and analysis possibilities.

* For example: Matlab’s MPC toolbox is good in posing and
soIvin? problems at a reasonably high level. Itis somewhat
difficult to use it in research though.

+ lItis good to make one formalism yourself to get insight.
The software packages then become easier to deal with.
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Features of constrained predictive control

» Constraints cause MPC be nonlinear. But most of the
time (when constraints are not near to be active) the
controller operates in a linear way.

* |n practice, meeting a hard constraint can be dangerous
for the system. An MPC might do hazardous actions (in
"panic”); usually a supervisory mode is used to prevent
such actions.

» We consider only time-invariant MPC. The system has
then constant coefficient matrices. In

H,

Vi =3
=4,

5 H,~-1 y
Hk+ilk)—r(k +i\k)”;m + 3 |anick +f\k)H;m
= =0

Q(i) and R(i) can vary with i, but they must not change
with k
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Alternative state variable choices Prediction

) ) * Predictions of the controlled variables z(x +i|k) must be obtained to
* Usually the MPC gives the control move as its output, solve the control problem. They are based on the best estimates of

whereas the project model uses absolute values. The #(k|k)and the assumed future inputs (or the latest input u(z-1))

integration in the state space model is then needed (to * The predictor can be seen as a “tuning parameter” in the MPC

create u from Au problem, because it plays a key role in the performance of the

controller.
*  We are actually specifying a model of the environment in which
,,,,,,,,,,,,,,,, l,,,,,,,,ﬁ MPC plant the plant is operating

— * Assuming that the states are measurable and there are
plant no disturbances we get

MPC 2/(z-1)

i
|
|
|
Au :u
L
|
|
|
I
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Prediction Prediction
3Gk +1)k) = Ax(k)+ Biidk|k) * Hence we get
i(k+2|k) = A.i(kwL l|k)+B]?(k+1‘k) = Azl(k) +AB1}(}{ |k)+BI?(k +1‘k) :;‘(k+1|k)=AX(k)+B[AI}(k k)_'_“(k_l)j'

- ik +2|k) = 4° (k) + AB ik |-+ ulk 1) |+ B[ AdiCk +1]k)+ A o) +u(k — 1) |
i(k+H k)= ARk + H, -1k)+ Bk + H, ~1[k) ' T ‘

k) +(A+DBu(k—1)

= A" x(k)+ A" Bii(k k) +---+ Bii(k + H, 1]k = A*x(k) + (A + DBAG(k|k) + BAG(k+1

But ik +i)=iatk+H,-1)k). H, <i<H, -1 and earlier control moves will be 1{ FH
studied only. S0 k|k) =Autk|k) + uCk—1) ’
a(k +1k) = Ak + 1|k + Ak |k) +2(k-1)

i) = A x()+ (4% +. .+ 4+ I)BAI}(HA‘)
BNk +H, 1[k)+ (4™ +.+ A+ DBu(k-1)

ik +H, —1k) = Ak + H, —1|k)+,, +An(k|k) +u(k-1)
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Prediction

ik +H, +1[k)= 4772 + (4™ + + 4+ DBAGK|F)

.+ (Ad+I)BAu(k+H, —1|A')+(AH" +...+A+I)Bu(k-1)

ik +H, k)= A7 x(k)+ (477 + ..+ 4+ DBA(k k)

(AP A A+ DBNGk+ H, = 1)+ (A7 4+ A+ DBu(k-1)

We can collect everything in a matrix-vector form
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Prediction

» The predictions are now obtained simply as

(k+1]k) S 8 = 8 HE+1]k)
ElUS LY - x(k+1|k
: 0 i e 0 _

i(k+H, k) W(k+H,

k)
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B
f(k+ 1)) 4 -
: > A'B
itk + H, k) 4 =®
i+ H, +|1\k) =| g [T 55 | € past
: =
ik H R | | A o
S A'B
a ]
[ B o ]
AB+B 0
H-1 B
> AB - B Adi(k k)
Py : & future
D.A'B -~ AB+B | Ai(k+H, ~1Jk)
H, 7\- H ,”j
> 4B > 4B
L= =
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Past

Measured output

A different fotmulation

reference

Future

o Design steps:

1. Process — first

principles nonlinear
2. Linear model of that

grocess (ss, tf, etc.)
. N-steps ahead

Predicted output

prediction model

19

k

Linear model
.J’[ﬂ-‘ + I] = ,Ll'[.fr] +
ylk] = Calk] +

4. State estimator

k+1 k+2 k+Nc k+Np K
Control Prediction 5. Performance index
horizon horizon

Bulk] + Gu[k) 6. Optimization

v[k]

E{wlkw[k]T} = Q. E{uk]u[k]T} = B. E{w[kv[k]T} = 0.
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Model predictive control

3. N-steps ahead prediction model

T

8 B Measured/estimated

Based on future inputs

Trp1 = Pexi + Hyuy,

yes1 = Py + Huy

4. Kalman observer

Z[k|k] = Z[k|k — 1] + M (yim[k] — Gm[k])
&k + 1|k] = A&[k|k] + Bulk]
ylk] = Calklk —1]

M = PCT(CPCT + R)™!
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Model predictive control
Tracking error  Input penalty
5. Performance ind Input rate penalty

6. Optimization problem

N1 fn
win Z E W, (us(k + i+ 1k) = ry(k + i+ 1)[3 Z Wty (k + ik) = e 5 (k + )13
aipn s A
st u

j=1 =1

o -

Aalto University
School of Science
and Technology

21

22

To continue:

* Read chapters 1 and 2 in Wang'’s book to become
convenient with one formalism.

» The rest of Wang’s book is interesting and useful. To
continue studies in MPC, | would start from it.

Aalto University
School of Science
and Technology

The formalism in Wang’s book
Process model

x, (1) = Ax, (1) + Bu(r)
»(#)=Cx, (1)

Discretized form
x, (k+1)= A4 x, (k)+ B, u(k)
y(k) = C, x, (k)

Form the difference

X, (k+l)—x,,,(k)=A,,,[x (k)-=x (k—l)]+Bm [u(k)—u(k—])]

m m m
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and define the variables

Ax, (k+1)=x, (k+1)—x, (k)
Ax, (k)=x,(k)—x,(k-1)
Au(lc)=u(k)—u(k—1)

It follows that

Axm(k + 1) = 4}JAX.

m

(k)+ B, Au(k)

m

Denote x(k)=[ah) »)] which leads first to

vk + D) - w&k) =C, [, (k+D—x,(B)] = C, A, (k +1)
=C 4 Ax, (k)+C,B, Au(k)

m*im m=m

C

Aalto University
School of Electrical
m  Engineering

25

Written generally in the MIMO case

Ax(k+1) A onxn, | [Ax(k) B -
[_\’(A’ T l) } - |:(-A 1y, -m} [‘(‘) :| + [(‘[ﬂ] Aulk)
e — r— e

Xa(k+1) Ag Xa(k) Ba
r Ax(k
y(k) = [on,xny Ln, wr\} [ \(i))]
—
Ca

Y = [y(ki+ ki) y(ki+2]ki) ... y(ki +Nplki)]
AU = [Au(ki) Au(ki+1) ... Au(ki+Ne—1)]

Y = Fxalki) + DAU
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and finally to

x(k+1) 4

ae, (k0] [ 4, o [as®] [ By
J’ (k+]) CmAm 1 y (k) CMB?"

wo-fo, 5k oo 07 o]

Now, remember

Yer1lk CA B 0 e 0 g
Y2k CA? CAB CB s 0 g1
" = 5 T+ . & 5 .
W—\ I3 A CAN-1B CAN-2B ... CB nl,'\ X
or Y ZFX'(’\")+(I)AU
A Aalto University
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CaB, 0 e 0 Ca\g
(},A(’,.’f(, CaBa e 0 Ca",';
b= CaAzB, CaAgBy -+~ 0 F=
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: : N,
. . ~ P
Np—1 Np—N, Cata

. - NI. 2 -
CoAn? ™" By ol 2By -+ Calla? B,

J=(R,=Y) (Ry=Y)+AUTRAU RT =[1 1 - 1]|r(k)=R"r(k)
J=[R, ~Fx(k)] [R, — Fx(k)] -2AU @ (R, - Fx(k)))+ AU” (©7® + R )AU
To find the minimum without constraints

oJ

oAU
= AU=(0T0+R) O (R, - Fx(k))

Aalto University
School of Science
and Technology
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* Generally (with constraints)

min o
AII‘ k ...Allk 4 N"\k

s.t. Aim’qAU < ‘,’.r'rmq

leads to a numerical optimization problem, for which
efficient algorithms exist.

Note that the idea has been to formulate the whole MPC
problem such that it can be solved by general optimization
software. See e.g. the command quadprog in Matlab.
Using a special MPC toolbox is possible of course, but it is
impossible to see "inside” what it really does.
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function[F,Phi,Phi_Phi,Phi_F,Phi_R,BarRs,A_e,
B_e,C_e]=mpcgain2(Ap,Bp,Cp,Nc,Np)

[m1,n1]=size(Cp);
[n1,n_in]=size(Bp);

%

A_e=eye(nl+ml,nl+ml);
%Forming the augmented model
A_e(1:nl1,1:n1)=Ap;
A_e(nl+l:n1+ml,1:n1)=Cp*Ap;

B_e=zeros(nl+ml,n_in);
B_e(1:nl,:)=Bp;
B_e(nl+l:nl+ml, :)=Cp*Bp;

C_e=zeros(ml,nl+ml);

C_e(:,nl+1:nl+ml)=eye(ml,ml);
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h(1:m1,:)=C_e;

F(1:m1,:)=C_e*A_e;

for kk=2:Np
h((kk-1)*m1+1:kk*m1,:)=h((kk-2)*m1+1:(kk-1)*m1,:)*A_e;
F((kk-1)*m1+1:kk*m1,:)= F((kk-2)*m1+1:(kk-1)*m1,:)*A_e;
end

v=h*B_eg;

Phi=zeros(m1*Np,n_in*Nc); %declare the dimension of Phi
Phi(1:(m1*Np),1:n_in)=v; % first column of Phi

for i=2:Nc
Phi(:,((i-1)*n_in+1):(i*n_in))=[zeros((i-1)*m1,n_in);v(1:(Np-(i-1)) *m1,:)];%Toeplitz matrix
end

BarRs=zeros(m1*Np,m1);
fori=1:m1
BarRs(((i-1)*Np+1):i*Np,i)=1;
end
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The Receding horizon solution

+ Ag(k+1) 2 (k) (k)
— B gt C,
+ +
u(k) _
A |
1
T—g 1
-K,
Au(k) 1—q¢!
g
<|> 71\“” |
Auk,)=[1 0 0)(®"@+R) (DR r(k,) - ©Fx(k,))

=K, 1(k,) K, x(k)=Krk)-[K, K, ]x(k)

Al S Note x=[ax” v

and Technology

31

32



Constraints

Constraints must be related to the control
variable AU,

The inequalities AU™ <AU <AU™ gre equal to

_AU<—A min -1 _AUmiu
or AU <
AU < A max I AUmax

u(ki) I 100 .0 Aulks)
Note that | 4+ 1) I I10..0 Aulk; +1)
wki+2) | = |T|ugs_1yq [Z1 1 .00 Aulk; +2)
u(ki + No — 1) I I1... 11| duk+N.-1)
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J = (Ry—Fax(k

which can be written as

—(Cru(k; — 1) + CoAU) < —U™n
(Cru(k; — 1) + CLAU) < U™a=,

Slmllarly Ymi" < F;l‘(]‘ ) + QAU < - ymaz

In short, minimize

i (Re—Fa(k:)—2AUTST (Ry—Fa(k;))+AUT

under the inequality constraints
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’\[ AU <
My

N

N |,

N3

where the data matrices are
v | C| L N | U+ Crulki 1)) L | T
M, = [ 02 ] s M= { [max Clu(k; 1) ; My = I )
= J( min }'HH'! + F-T'(}i‘f)
Np = [ Aymaz } M; = [ ] N3 = [ ymaz _ Fa(k,) } -
or MAU < v

Matlab’s command quadprog can for example be used.
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