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Model Predictive Control (MPC)

Literature:

« Wang, L, Model Predictive Control System Design and
Implementation Using MATLAB, Springer, 2009.

* Maciejowski, J. M., Predictive Control, with Constraints,
Pearson Education, 2002.

 Rawlings, J. B., and Mayne, D. Q., Model Predictive Control,
Theory and Design, Nob Hill, 2009.

Aalto University
School of Electrical
B Engineering



A?

Aalto Unive
School of E
Engineerin

LET'S START AT THE BEGINNING.
A MANIFOLD IS A TOPOLOGICAL
SPACE, WITH A STRUCTURE OF

CHARTS ... s
: TO LEARN TW(S !

- TS QOMPLETELY
IRRELEVANT TO

THIS ISH'T

| DON'T! | CAN
IRRELEVANT. ! GET ALOMG FINE
ALL EONTROL | WITHOUT
ENGINEERS NONLINEAR
NIEED T0 KNOW | CONTROL.
THIS.

1 “ |

OH YEAH? HOW
ARE YOU GOING TO

MANAGE [N THE THAT'S NOT
REAL WORLD? TRUEN I'LL
EVERYTHING 1S USE...

MOHLINEARY

CONTROL!

m;im




Remark 1.1. Note that a number of control methods which have gained popularity in
industry, such as fuzzy control and neural control, do not explicitly address any of the funda-
mental control issues in a quantitative way at all. This is the main reason why control people
do not usually take these methods seriously. Naturally, these methods will still often work at
least in not too demanding applications. They also appeal to many people with a non-control
background and their functioning can more easily be explained to process operators and the
media.
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Model Predictive Control

Can deal with constraints in a natural way

The basic idea is easy to understand

It extends to multivariable plants naturally
Generally more powerful than traditional PID control

Integrates optimal control, stochastic control, control of
processes with dead-time, multivariable control, control
that can handle constraints.

A practical methodology, which has numerous technical
applications, especially in the process industry.

It was earlier neglected and critisized by the control
engineering community (lack of stability proofs,
robustness etc.); this situation has changed due to
progress in theory.
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The main characteristics in MPC

* An internal model capable of fast simulation

« A reference trajectory which defines the desired
closed-loop behaviour

» The receding horizon principle

* Future input trajctory by a finite number of control
moves

* On-line optimization (possibly constrained)
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Model Predictive Control
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The Receding horizon principle

ut+k|r)

u(t)

i >

i -
t-1 t t+1 t+2 .- t+k - t+N

The output is predicted over the prediction
horizon. Control moves are calculated over
the control horizon by optimizing a criterion.
AT ot Only the first move is realized; then the
7 process is repeated.



* A lot of different formulations can be found in the

literature (MPHC, MAC, DMC, EHAC, EPSAC, GPC etc.
etc.)

* Maciejowski's book has information on commercial MPC
products, e.g. DMCPIlus, RMPCT, Connoisseur, PFC,
HIECON, 3dMPC, Process Perfecter.
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Model predictive control (MPC)

Note that there are different formalisms to pose the
MPC problem.

Also, there exist software packages to do the job.
The problem in using software packages “blindly” is the
lack of insight and analysis possibilities.

* For example: Matlab’s MPC toolbox is good in posing and
solvin? problems at a reasonably high level. It is somewhat
difficult to use it in research though.

» Itis good to make one formalism yourself to get insight.
The software packages then become easier to deal with.
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Cost function

) H
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i=H,
Prediction hpnzon H , »0(),R(@) positive semidefinite
Control horizon  H
Control move Au it is assumed that the penalty is on the control
moves, not controls as such

Note that if A, >1 there 1s no penalty immediately at time £.

The states are usually not measurable; instead we have predictions
#(k +1|k) meaning that we estimate the state by using data up to
time k.
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Features of constrained predictive control

* Constraints cause MPC be nonlinear. But most of the
time (when constraints are not near to be active) the
controller operates in a linear way.

* |n practice, meeting a hard constraint can be dangerous
for the system. An MPC might do hazardous actions (in
"panic”); usually a supervisory mode is used to prevent
such actions.

« We consider only time-invariant MPC. The system has
then constant coefficient matrices. In

", H,-1
Viky=Y |ek+ilk)-rk+i V‘)H;@ + ) [aack+ifof,,,
oy i=0

Q(i) and R(i) can vary with j , but they must not change
with k
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Alternative state variable choices

« Usually the MPC gives the control move as its output,
whereas the project model uses absolute values. The
integration in the state space model is then needed (to
create u from Au

\ MPC plant
e
| |
| |
| |
| i u Real
| MPC [ —» z/(z-1) ——>
, | plant
|

|

: Real controller l
|
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Prediction

Predictions of the controlled variables sk + iJk) must be obtained to
solve the control problem. They are based on the best estimates of
x(k|k) and the assumed future inputs (or the latest input u(z-1))
The predictor can be seen as a ”’tuning parameter” in the MPC
problem, because it plays a key role in the performance of the
controller.
We are actually specifying a model of the environment in which
the plant 1s operating

Assuming that the states are measurable and there are
no disturbances we get
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Prediction

Rk +1]k) = Ax(k)+ Bii(k |k)
x(k + 2\1«) = A%(k +1|k) + Bii(k +1|k) = A’x(k) + ABi(k|k) + Bii(k +1|k)

x(k+H ,|k)= A%(k+H ,—1|k)+ Bii(k + H , —1|k)
= A" x(k)+ A" Bi(k|k)+---+ Bi(k + H, —1[k)

But dak+ilk)=ak+H,-1]k), H,<i<H, -1 and earlier control moves will be
studied only. S0 ack|k) =Ada(k k) +u(k 1)
ik +1)k) = Ad(k +1]k) + Ad (k) +u(k ~1)

a(k+H, ~1)k)=Ad(k + H, - 1/k) +...+ Ad(k|k) +u(k —1)
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Prediction
* Hence we get

5k +1/k) = Ax(k) + B[ Adi(kfe) +u(k—1) |
R(k +2|k) =A*x(k) + AB| Ai(k|k)+u(k—1) |+ B[Aﬁ(k+ 1}kc)+ Adi(k |k) +u(k—1)]

| ]
a(k+1k)

= A’x(k)+(A+1)BNi(k|k)+ B Aii(k +1|k) + (A +I)Bu(k 1)

X(k+H,|k)=A"x(k)+ (4™ +...+ A+ 1)BAi(k|k)
...+ BAi(k+ H, -1]k)+ (4™ +...+ A+ 1)Bu(k-1)
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Prediction

X(k+H, +1k)=A""x(k)+(A™ +...+ A+ )BAu(k|k)
oot (A+DBAG(k+ H, —1|k)+ (A" +...+ A+ )Bu(k —1)

Rhk+H k)= A" x(k)+ (4" +...+ A+ I)BAi(k k)
et (AT A A+ DBNI+ H, -1k + (4" + ..o+ A+ D) Bu(k 1)

We can collect everything in a matrix-vector form
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Prediction

* The predictions are now obtained simply as

. - [c o 01~ . -
Z(k +1|k) 0 0 X(k+1[k)
2(k+H k) | 0 (’) c | X(k+H k) |
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A different fotmulation

reference
Past Futu re/
T °
o Q\
Predicted output
Measured output o
o—9
(o] _|_
o
o
s g — Predicted input
2]
| | | | | | |
[ [ [ [ [ [ I
K k+1 k+2 k+Nc k+Np
_ Control Prediction
Linear model horizon horizon

r|k + 1] = Az[k] + Bulk] + Gw|k]
ylk] = Czlk] 4 v[kK]

E{wklwk]T} = Q, E{v[k]v[k]"} = R, E{w[k|v[k]T} = 0,
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Design steps:

1. Process — first

principles nonlinear
2. Linear model of that

grocess (ss, tf, etc.)
. N-steps ahead

prediction model
4. State estimator

5. Performance index
6. Optimization



Model predictive control

3. N-steps ahead prediction model

_"?"[""‘llk A B 0 il 0 U k|k .
Tesope ||| 42 AB B o 0 |wgp Measured/estimated
. = . [Ty . . . . .
_.I’g_.+;\r‘k le élNilB A-"‘l"’viQB ik B Uﬂ:‘+N|k
] Based on future inputs
Yi+1|k CA CB 0 0
yf-‘+2|k ('4"'12 CAB CB e 0 u k+1|k
. = R . . ) . .
_-!l'f.‘—)—:‘\'r”.’ C'A‘N _(‘A‘NilB CZ"‘I‘IV?QB s & CB “k—!—;‘\r]ﬁ'_

Tyl = Pyt + Hotlgs
Yk4+1 = Pxy. + Huy,
4. Kalman observer
B [k|k] = & [klk — 1] + M Yo [k] — G [K])
z[k + 1|k] = Az[k|k] + Bulk]
ylk| = Celk|k — 1]
M=PCTCPOT + B
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Model predictive control

Tracking error ~ Input penalty

5. Performance index Input rate penalty

N—-1 : Toa
min S D oIy gk + i+ 1K) —r(k+ i+ D)5+ D I Wa(u(k + ilk) — uee (K + mng)
=0 \j=1

Uk |k Ut N—1|k £
P

i=1

5.5
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To continue:

 Read chapters 1 and 2 in Wang’s book to become
convenient with one formalism.

* The rest of Wang's book is interesting and useful. To
continue studies in MPC, | would start from it.
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The formalism in Wang’s book

Process model
x,(t)=Ax, (t)+ Bu(t)
y(t) =Cx,, (2)

Discretized form
x (k+1)=A4 x (k)+ B u(k)

y(k)=C,x, (k)
Form the difference

x, (k+1)—x, (k)= 4, [x, (k) —x, (k=1)]+ B, [u(k) —u(k —1)]
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and define the variables

Ax (k+1)=x (k+1)—x, (k)
Ax (k)y=x (k)—x, (k-1)
Au(k)=u(k)—u(k—1)

It follows that

Ax (k+1)=A4 Ax (k)+ B Au(k)
Denote x(k)=[ax’ (k) ()] Wwhich leads first to

y(k+1)—y(k)=C, [x,(k+1)—x, (k)] = C, Ax, (k +1)
=C 4 Ax (k)+C B Au(k)
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and finally to

x(k+1)

Ax (k+1)

- y(k+])

C

b =o, 1]{ 0 }

A

m

C,, A

m--m

Ax,, (k)

Now, remember

Yk+1|k
yﬁ.‘.+2|k

| Yk+N |k

or
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Written generally in the MIMO case

Ax(k+1) A Onxn, | |Ax(k) B |
[,‘L'(K'—I— ) } T {CA IL”FMJ [\(A) ] 2 3 [CB} Au(k)

3 ~ Y N——pr— N— . N et
Xq(k+1) Ag Xa(k) Bq
Ax(k
."-'(»":'-') = [*Duxxn} ﬂ.ﬂ;-xn}-] {1&}}}
R —
Ca

Y = [y(ki+ 1|k) y(ki+2[ki) ... y(ki+Np|ki)]
AU = [Au(ki) Au(ki+1) ... Au(ki+Ne—1)]

Y = Fxq(ki) +PAU
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" 4R, 0 0 : SinE
CEAE Ba C,B; - 0 g
&= ng‘leBﬂ C,A,B, --- 0 o
Z ; : e
A B, CAY 2B, ... cAY Mg, Caa”]
J=(Ry—Y) (Ry—Y)+AUTRAU R =[1 1 - 1]r(k)=R"r(k,)

J=[R - Fx(k)] [R, - Fx(k)]-2AU"®" (R - Fx(k))+AU" (®"®+ R)AU

To find the minimum without constraints

oJ ~
— =20 [R — Fx(k)]+2| @' ®+R |AU =0

= AU =(®"®+R) 7 (R, ~Fx(k))
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* Generally (with constraints)

min i 5
fjn.Hk k ...ﬂ.h’}; Ny [k
S.t. A:'m?qﬂfr--"r <1 lineq

leads to a numerical optimization problem, for which
efficient algorithms exist.

Note that the idea has been to formulate the whole MPC
problem such that it can be solved by general optimization
software. See e.g. the command quadprog in Matlab.

Using a special MPC toolbox is possible of course, but it is
Impossible to see "inside” what it really does.
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function[F,Phi,Phi_Phi,Phi F,Phi R,BarRs,A e,
B e,C_e]=mpcgain2(Ap,Bp,Cp,Nc,Np)

[ml,nl1]=size(Cp);
[n1,n_in]=size(Bp);

%

A e=eye(nl+ml,nl+ml);
%Forming the augmented model
A e(l:nl1,1:n1)=Ap;

A e(nl+l:nl+ml,1:nl1)=Cp*Ap;

B_e=zeros(nl+ml,n_in);
B e(l:nl,:)=Bp;
B_e(nl+l:nl+ml,:)=Cp*Bp;

C_e=zeros(ml,nl+ml);

C_e(:,nl+1:nl+ml)=eye(ml,ml);
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h(1:m1,:)=C_e;

F(1:m1,:)=C_e*A_e;

for kk=2:Np
h((kk-1)*m1+1:kk*m1,:)=h((kk-2)*m1+1:(kk-1)*m1,:)*A _e;
F((kk-1)*m1+1:kk*m1,:)= F((kk-2)*m1+1:(kk-1)*m1,:)*A _e;
end

v=h*B_e;

Phi=zeros(m1*Np,n_in*Nc); %declare the dimension of Phi
Phi(1:(m1*Np),1:n_in)=v; % first column of Phi

for i=2:Nc
Phi(:,((i-1)*n_in+1):(i*n_in))=[zeros((i-1)*m1,n_in);v(1:(Np-(i-1))*m1,:)];%Toeplitz matrix
end

BarRs=zeros(m1*Np,m1);
fori=1:m1l
BarRs(((i-1)*Np+1):i*Np,i)=1;
end
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The Receding horizon solution

—I_ 3 ~ {’L: L 1} ‘r‘l’?'n' {'I"JI
e Bm q
_I_

J_l 1 ]

—1

I —q

== j—{.l‘ [

Au(k)=[1 0 - 0](®"®+R) (®'Rr(k,)~ D Fx(k,))
weX(k) =K r(k)-[ K, K, |x(k)

Al BT Note x=[a y']

=K, r(k;)-K



Constraints

Constraints must be related to the control
variable AU.

The inequalities AU™ <AU<AU™ gre equal to

—~AU < -AU™ —1 _AU™™ |
or AU <
AU < AU™* I AU™
u(k;) 1 bl (20 W ... 80T Au(k;)
Note that | . + 1) I 1710 ...0 Au(k; + 1)
U.(kf—i—g} _ I w(k; — 1) + I . Aulk; + 2)
u(k;+N.—1)| | I] | BT o FF) | Aulhe-Ne— 1)
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which can be written as

—(Chiulk; — 1) + CoAU ) < __ymin
(Ciul(k: — 1) + CAT) < Umae.

Similarly Y™ < Fa(k;) + AU < Y™,

In short, minimize
= (Rs—Fz(k;))' (Rs—Fxz(k;))—2AU T ' (R, —Fx(k;))+AUT (" 6+ R) AU,

under the inequality constraints
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M, N,
Ms | AU < | Ns
M3y Ny

where the data matrices are

. o _CQ e _Driniﬂ —|—Clu{ki —1} g T .
Mr1 e CE } : ﬁ!l — [ [Jmazx _Clu(ka@ o 1) } " f'l'irz == { T :| ._

Ny — AU J M — [—@] Na— [—}-- - +F;r(k;‘)] |

Affmas & ymaz _ Fr(k;)

or MAU < ~,

Matlab’s command quadprog can for example be used.
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