
Chapter 8

• Introduction to Model Predictive Control



Model Predictive Control (MPC)
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Model Predictive Control
• Can deal with constraints in a natural way
• The basic idea is easy to understand
• It extends to multivariable plants naturally
• Generally more powerful than traditional PID control
• Integrates optimal control, stochastic control, control of 

processes with dead-time, multivariable control, control
that can handle constraints.

• A practical methodology, which has numerous technical
applications, especially in the process industry.

• It was earlier neglected and critisized by the control
engineering community (lack of stability proofs, 
robustness etc.); this situation has changed due to 
progress in theory. 



The main characteristics in MPC
• An internal model capable of fast simulation
• A reference trajectory which defines the desired

closed-loop behaviour
• The receding horizon principle
• Future input trajctory by a finite number of control

moves
• On-line optimization (possibly constrained)
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The Receding horizon principle

The output is predicted over the prediction
horizon.  Control moves are calculated over
the control horizon by optimizing a criterion.  
Only the first move is realized; then the
process is repeated.



• A lot of different formulations can be found in the
literature (MPHC, MAC, DMC, EHAC, EPSAC, GPC  etc. 
etc.)

• Maciejowski’s book has information on commercial MPC 
products, e.g. DMCPlus, RMPCT, Connoisseur, PFC, 
HIECON, 3dMPC, Process Perfecter.



Model predictive control (MPC)

• Note that there are different formalisms to pose the
MPC problem.

• Also, there exist software packages to do the job.  
The problem in using software packages ”blindly” is the
lack of insight and analysis possibilities.

• For example: Matlab’s MPC toolbox is good in posing and 
solving problems at a reasonably high level.  It is somewhat
difficult to use it in research though.

• It is good to make one formalism yourself to get insight.  
The software packages then become easier to deal with.
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Features of constrained predictive control

• Constraints cause MPC be nonlinear.  But most of the 
time (when constraints are not near to be active) the 
controller operates in a linear way.

• In practice, meeting a hard constraint can be dangerous
for the system.  An MPC might do hazardous actions (in 
”panic”); usually a supervisory mode is used to prevent
such actions.

• We consider only time-invariant MPC.  The system has
then constant coefficient matrices.  In

Q(i) and R(i) can vary with i , but they must not change
with k
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Alternative state variable choices

• Usually the MPC gives the control move as its output, 
whereas the project model uses absolute values.  The
integration in the state space model is then needed (to 
create u from u



Prediction
• Predictions of the controlled variables must be obtained to

solve the control problem.  They are based on the best estimates of
and the assumed future inputs (or the latest input u(t-1))

• The predictor can be seen as a ”tuning parameter” in the MPC
problem, because it plays a key role in the performance of the 
controller.

• We are actually specifying a model of the environment in which
the plant is operating

• Assuming that the states are measurable and there are
no disturbances we get
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Prediction
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Prediction
• Hence we get
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Prediction
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We can collect everything in a matrix-vector form



Prediction
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Prediction

• The predictions are now obtained simply as
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Design steps:

1. Process – first 
principles nonlinear 
2. Linear model of that 
process (ss, tf, etc.)
3. N-steps ahead 
prediction model

5. Performance index

FuturePast
reference

Predicted output

Predicted input

k k+1 k+2 k+Nc

Prediction 
horizon

Measured output

Linear model
6. Optimization

4. State estimator

A different fotmulation

k+Np

Control 
horizon



Model predictive control
3. N-steps ahead prediction model

Measured/estimated

Based on future inputs

4. Kalman observer



6. Optimization problem

5. Performance index

Tracking error Input penalty

Input rate penalty

J

Model predictive control



To continue:

• Read chapters 1 and 2 in Wang’s book to become
convenient with one formalism.

• The rest of Wang’s book is interesting and useful.  To 
continue studies in MPC, I would start from it.



Process model

Discretized form

Form the difference

The formalism in Wang’s book
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and define the variables

It follows that

Denote which leads first to
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and finally to
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Written generally in the MIMO case
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• Generally (with constraints)

leads to a numerical optimization problem, for which
efficient algorithms exist.

Note that the idea has been to formulate the whole MPC 
problem such that it can be solved by general optimization
software.  See e.g. the command quadprog in Matlab.

Using a special MPC toolbox is possible of course, but it is 
impossible to see ”inside” what it really does.  



function[F,Phi,Phi_Phi,Phi_F,Phi_R,BarRs,A_e, 
B_e,C_e]=mpcgain2(Ap,Bp,Cp,Nc,Np)

[m1,n1]=size(Cp);

[n1,n_in]=size(Bp);

%

A_e=eye(n1+m1,n1+m1);

%Forming the augmented model                          

A_e(1:n1,1:n1)=Ap;

A_e(n1+1:n1+m1,1:n1)=Cp*Ap;

B_e=zeros(n1+m1,n_in);

B_e(1:n1,:)=Bp;

B_e(n1+1:n1+m1,:)=Cp*Bp;

C_e=zeros(m1,n1+m1);

C_e(:,n1+1:n1+m1)=eye(m1,m1);



h(1:m1,:)=C_e;
F(1:m1,:)=C_e*A_e;
for kk=2:Np
h((kk-1)*m1+1:kk*m1,:)=h((kk-2)*m1+1:(kk-1)*m1,:)*A_e;
F((kk-1)*m1+1:kk*m1,:)= F((kk-2)*m1+1:(kk-1)*m1,:)*A_e;
end
v=h*B_e;
Phi=zeros(m1*Np,n_in*Nc); %declare the dimension of Phi
Phi(1:(m1*Np),1:n_in)=v; % first column of Phi

for i=2:Nc
Phi(:,((i-1)*n_in+1):(i*n_in))=[zeros((i-1)*m1,n_in);v(1:(Np-(i-1))*m1,:)];%Toeplitz matrix
end

BarRs=zeros(m1*Np,m1);
for i=1:m1
BarRs(((i-1)*Np+1):i*Np,i)=1;
end
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Constraints

Constraints must be related to the control 
variable      . 

The inequalities                         are equal to                             
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which can be written as

Similarly

In short, minimize

under the inequality constraints



or  

Matlab’s command quadprog can for example be used.


