Exercise sheet II
1) Determine the disks of convergence of:
a)
$$\sum_{n=1}^{\infty} \sqrt[n]n (z-1)^n$$

b) $\sum_{n=1}^{\infty} n^2 (z+2)^n$
c) $\sum_{n=1}^{\infty} n! (z-i)^n$
Solution: a) The disk of convergence is
 $\Delta(1,p)$ where $\frac{1}{p} = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$ for
 $a_n = \sqrt[n]{n}$.
We try to calculate $\lim_{n \to \infty} \sqrt[n]{a_n}$.
 $\sqrt[n]{a_n} = (a_n)^{1/n} = (e^{\frac{1}{n} \tan n})^{1/n} = e^{\frac{1}{n} \tan n}$.
Have $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} e^{\frac{1}{n} \tan n} = e^{\frac{n}{n} \tan n}$.
Have $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} e^{\frac{1}{n} \tan n} = e^{\frac{n}{n} \tan n}$.
Have $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} e^{\frac{1}{n} \tan n} = e^{\frac{n}{n} \tan n}$.
Have $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} e^{\frac{1}{n} \tan n} = e^{\frac{n}{n} \tan n}$.
Have $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} e^{\frac{1}{n} \tan n} = e^{\frac{n}{n} \tan n}$.
Have $\lim_{n \to \infty} \sqrt[n]{a_n}$. Here $a_n - (\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} e^{\frac{1}{n} \ln \frac{1}{n}}$.
We calculate $\lim_{n \to \infty} \sqrt[n]{a_n}$ is not changed if we drop 0 's
from the segunce. Here $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{k \to \infty} e^{\frac{1}{n} \ln \frac{1}{n}}$.
 $\Delta(-2,1)$ is the disk of convergence.

Solution: a) We know that
$$\frac{1}{1-z} = \sum_{k=0}^{\infty} z^{k}$$
 in
 $|z| < 1$. Since $\frac{d}{dz} (1-z)^{-1} = (1-z)^{2}$
we get $\frac{1}{(1-z)^{2}} = \sum_{n=1}^{\infty} n z^{n-1} = \sum_{k=0}^{\infty} (k+1)z^{k}$
Valid in $|z| < 1$.
b) We keep differentiating and get
 $\frac{d}{dz} (1-z)^{-2} = +2 (1-z)^{-3} = \frac{2}{(1-z)^{3}}$.
That is, $\frac{1}{(1-z)^{3}} = \frac{1}{dz} \sum_{k=1}^{\infty} (k+1)k z^{k-1} = \sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{dz} z^{n}$
Hence $\frac{1}{(1+z^{2})^{3}} = \frac{1}{(1-(z^{2}))^{3}} = \sum_{n=0}^{\infty} (-1)^{n} \frac{(n+1)(n+2)}{2} z^{2n}$
Valid when $|z| < 1$.
c) If we integrate $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^{n}$ we get
 $-\log(1-2) = C + \sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1}$. Since $\log(1) = 0$
we have $\log(1-z) = -\sum_{n=1}^{\infty} z^{n}$.

Now, hog
$$(1+z^2) = hog (1-(-z^2)) =$$

$$= -\sum_{n=1}^{\infty} (-\frac{z^2}{n})^n = -\sum_{n=1}^{\infty} (-1)^n z^{2n} =$$

$$= \sum_{n=1}^{\infty} (\frac{-1}{n})^{n+1} z^{2n} \quad \text{when} \quad |z| < 1.$$
(3) Show that $\frac{e^2}{1-z} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{\infty} \frac{1}{k!}\right) z^n \quad \text{when}$

$$|z| < 1. \quad (\text{Hint: Taylor series can be multiplied} \\ \text{in their disks of convergence.})$$
Solution:
If $f(z) = \sum a_n z^n \quad \text{and} \quad g(z) = \sum b_n z^n$
then
$$f(z)g(z) = \sum c_n z^n \quad \text{where} \quad C_n = \sum_{k=0}^{n} \frac{1}{k!} \cdot 1 = \sum_{k=0}^{n} \frac{1}{k!}$$
Now see that $c_n = \sum_{n=0}^{n} \frac{1}{k!} \cdot 1 = \sum_{k=0}^{n} \frac{1}{k!}$
That is, $\frac{e^2}{1-z} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \frac{1}{k!}\right) z^n \quad \text{when}$

$$= |z| < 1$$

(1) Assume that
$$f$$
 is a non-constant
entire function. Assume there is a constant
 $\lambda \neq 1$ such that $f(\lambda z) = f(z)$ for even
 $z \in C$. Show that there must be an
integer med such that $\lambda^m = 1$. Also show that
there is an entire function g such that
 $f(z) = g(z^m)$ where m is the unividual
integer $m \ge d$ such that $\lambda^m = 1$.
Solution: $f(z) = \sum_{n=0}^{\infty} a_n Z^n$ in C since
 f is entire. Since f is non-constant
at least one coefficient $a_n \neq 0$, $n \ge 1$.
Choose the coefficient $a_n \neq 0$, $n \ge 1$.
Choose the coefficient with univided index
 m . Since $f(\lambda \ge) = f(z)$ and the
Taylor expansion is unique we get
 $a_{m} = \lambda^m a_m \Longrightarrow \lambda^m = 1$.
We also see that $a_{z} = 0$ unless $\lambda^{k} = 1$
and $k \ge 0$. Also $a_{f} \ge 0$ since $a_{f} \ge ha$ and
 $\lambda \ne 1$. Choose M as the minimal k so that
 $k \ge 1$ and $\lambda^{k} = 1$.
We see that, since m is univided
 $l \ge 0$. Therefore $f(z) = \sum_{n=0}^{\infty} a_{nn} \equiv \lambda_{nn}^{m}$.
Define $b_{n} = a_{nm}$ and put $g(z) = \sum_{n=0}^{\infty} b_{n} z^{n}$.
We get $g(z^m) = \sum_{n=0}^{\infty} b_n z^{nm} = f(z)$.