Exercise sheet 11

1) Determine the disks of convergence of:
a) $\sum_{n=1}^{\infty} \sqrt[n]{n}(z-1)^{n}$
b) $\sum_{n=1}^{\infty} n^{2}(z+2)^{2^{n}}$
c) $\sum_{n=1}^{\infty} n!(z-i)^{n!}$

Solution: a) The disk of converquace is $\Delta(1, \rho)$ where $\frac{1}{\rho}=\lim _{n \rightarrow \infty} \sup _{n} \sqrt[n]{\left|a_{n}\right|}$ for $a_{n}=\sqrt[n]{n^{\prime}}$.
We try to calculate $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}$

$$
\sqrt[n]{a_{n}}=\left(a_{n}\right)^{1 / n}=\left(e^{\frac{1}{n} \ln n}\right)^{1 / n}=e^{\frac{1}{n^{2}} \ln n}
$$

Hence $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}{ }^{\prime}=\lim _{n \rightarrow \infty} e^{\frac{1}{n^{2}} \ln n}=e^{0}=1$
and the disk of anvergace is $\Delta(1,1)=$

$$
=\{z \in \mathbb{C} ;|z-1|<1\}
$$

b) The disk of convergence is $\Delta(-2, \rho)$ when $\rho^{-1}=\lim _{n \rightarrow \infty} \sup _{\sqrt[n]{ }}^{\sqrt[n]{a_{n}}}$. Here $a_{n}= \begin{cases}k^{2} & \text { if } n=2^{k} \\ 0 & \text { if } n \neq 2^{k}\end{cases}$
We calculate $\lim _{k \rightarrow \infty} \sqrt[2^{k}]{k^{2}}=\lim _{k \rightarrow \infty}\left(e^{2 \ln k}\right)^{\frac{1}{2^{k}}}=$

$$
=\lim _{k \rightarrow \infty} e^{\frac{\ln k}{2^{-1}}}=e^{0}=1
$$

$\lim _{n \rightarrow \infty} \sup _{n} \sqrt[n]{a_{n}}$ is not changed if we drop 0 's from the sequence. Haw $\lim _{n \rightarrow \infty} \sin _{n \rightarrow \infty} \sqrt[n]{a_{n}}=\lim _{k \rightarrow \infty} \sqrt[2 k]{k^{2}}=1$ and $\rho=1$. That is, $\Delta(-2,1)$ is the disk of convergence.
c) The disk of convergence is
$\Delta(i, \rho)$ where $\frac{1}{\rho}=\lim _{n \rightarrow \infty} \sup \sqrt[n]{a_{n}}$ where

$$
\begin{aligned}
& a_{n}=\left\{\begin{array}{ll}
k & \text { if } k=n! \\
0 & \text { if } k \neq n!
\end{array}\right. \text { We calculate } \\
& \lim _{k \rightarrow \infty} \sqrt[k]{k}=\lim _{k \rightarrow \infty} e^{\frac{1}{k} \ln k}=e^{0}=1 .
\end{aligned}
$$

Again, since dropping O^{\prime} s doesn't effect $\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}}$ we get $\rho^{-1}=1$ so
the disk of convergence is $\Delta(i, 1)$.
(2) Find the Taylor series expansion of f about the origin, and identify the largest opendisk $\Delta(0, \rho)$ in which the expansion is valid:
a) $f(z)=\frac{1}{(1-z)^{2}}$
b) $f(z)=\frac{1}{\left(1+z^{2}\right)^{3}}$
c) $f(z)=\log \left(1+z^{2}\right)$
(Hint: Remember the geometric seric. Also remember that Taylor series can be differentiated and integrated termwise)

Solution: a) We know that $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$ i-

$$
|z|<1 \text {. Since } \frac{d}{d z}(1-z)^{-1}=(1-z)^{-2}
$$

we get $\frac{1}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n-1}=\sum_{k=0}^{\infty}(k+1) z^{k}$ valid in $|z|<1$.
b) We keep differentiating and get

$$
\frac{d}{d z}(1-z)^{-2}=+2(1-z)^{-3}=\frac{2}{(1-z)^{3}}
$$

That is, $\frac{1}{(1-z)^{3}}=\frac{1}{2} \sum_{k=1}^{\infty}\left((k+1) k z^{k-1}=\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} z^{n}\right.$ Hence $\frac{1}{\left(1+z^{2}\right)^{3}}=\frac{1}{\left(1-\left(-z^{2}\right)\right)^{3}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(n-1)(n+2)}{2} z^{2 n}$ valid when $|z|<1$.
c) If we integrate $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$ we get $-\log (1-z)=C+\sum_{n=0}^{\infty} \frac{z^{n+1}}{n+1}$. Since $\log (1)=0$ we have

$$
\log (1-z)=-\sum_{n=1}^{\infty} \frac{z^{n}}{n}
$$

when $|z|<1$.

Now, $\log \left(1+z^{2}\right)=\log \left(1-\left(-z^{2}\right)\right)=$

$$
\begin{aligned}
& =-\sum_{n=1}^{\infty} \frac{\left(-z^{2}\right)^{n}}{n}=-\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{2 n}= \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} z^{2 n} \quad \text { when }|z|<1
\end{aligned}
$$

(3) Show that $\frac{e^{z}}{1-z}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{k!}\right) z^{n}$ when $|z|<1$. (Hint: Taylor series can be multiplied in their disks of convergence.)
Solution:
If $f(z)=\sum a_{n} z^{n}$ and $g(z)=\sum b_{n} z^{n}$ then

$$
f(z) g(z)=\sum c_{n} z^{n} \text { where } c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

Since $e^{z}=\sum_{n=0}^{\infty} \frac{1}{n!} z^{n}$ and $\frac{1}{1-z}=\sum_{n=0}^{\infty} z^{n}$ we see that $c_{n}=\sum_{k=0}^{n} \frac{1}{k!} \cdot 1=\sum_{k=0}^{n} \frac{1}{k!}$
That is, $\frac{e^{z}}{1-z}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} \frac{1}{k!}\right) z^{n} \quad$ when
(since $\frac{1}{1-z}=\sum z^{n}$ in $|z|<1$ only)
(4) Assume that f is a non-constant entire function. Assume there is a constant $\lambda \neq 1$ such that $f(\lambda z)=f(z)$ for every $z \in \mathbb{C}$. Show that there must be an integer $m \geq 2$ such that $\lambda^{m}=1$. Also show that there is an entire function g such that $f(z)=g\left(z^{m}\right)$ where m is the minimal integer $m \geq 2$ such that $\lambda^{m}=1$.
Solution: $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ in \mathbb{C} since f is entire. Since f is non-constent at least one coefficient $a_{n} \neq 0, n \geq 1$. Choose the coefficient with minimal index m^{\prime}. Since $f(\lambda z)=f(z)$ and the Taylor expansion is unique we get

$$
a_{m}=\lambda^{m} a_{m} \Rightarrow \lambda^{m}=1
$$

We also see that $a_{k}=0$ unless $\lambda^{k}=1$ and $k \geq 0$. Also $a_{1}=0$ since $a_{1}=\lambda a_{1}$ and $\lambda \neq 1$. Choose m as the minimal k so that $k>1$ and $\lambda^{k}=1$.

We see that, since m is minimal, that $a_{k}=0$ unless $k=\infty$ lm for some $l \in \mathbb{N}$. Therefore $f(z)=\sum_{l=0}^{\infty} a_{l m} z^{l m}$
Define $b_{n}=a_{n m}$ and put $g(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$. We get $g\left(z^{m}\right)=\sum_{n=0}^{\infty} b_{n} z^{n m}=f(z)$.

