Exercise sheet 12
(1) Obtain the Laurent series expansions of $f(z)=\frac{1}{2 z-z^{2}}$ and $g(z)=\frac{2-2 z}{\left(2 z-z^{2}\right)^{2}}$ in
a) $\Delta^{*}(0,2)=\{z \in \mathbb{C} ; 0<|z|<2\}$
b) $\Delta^{*}(2,2)=\{z \in \mathbb{C} ; 0<|z-2|<2\}$
c) $D=\{z \in \mathbb{C} ;|z|>2\}$

Solution: Notice that $f^{\prime}(z)=\frac{d}{d z}\left(2 z-z^{2}\right)^{-1}=$

$$
=\frac{2-2 z}{\left(2 z-z^{2}\right)^{2}}=g(z)
$$

We need to find Laurent series for f and then clifferentiate to find also Law rent series for g.
a) $f(z)=\frac{1}{2 z} \cdot \frac{1}{1-\frac{z}{2}}=\frac{1}{2 z^{2}} \sum_{n=0}^{\infty}\left(\frac{z}{2}\right)^{n}=\frac{1}{2 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+2}}$

Therefore

$$
f^{\prime}(z)=g(z)=-\frac{1}{2 z^{2}}+\sum_{n=1}^{\infty} \frac{n z^{n-1}}{2^{n+2}}=-\frac{1}{2 z^{2}}+\sum_{n=0}^{\infty} \frac{(n+1) z^{n}}{2^{n+3}}
$$

Both series are valid in $\Delta^{*}(0,2)$.
b)

$$
\begin{aligned}
& \Delta^{*}(2,2)=\{z ; 0<|z-2|<2\} \\
& f(z)=-\frac{1}{z-2} \cdot \frac{1}{z}=\frac{-1}{z-2} \cdot \frac{1}{2+(z-2)}=-\frac{1}{2(z-2)} \cdot \frac{1}{1+\frac{(z-2)}{2}} \\
& =-\frac{1}{2(t-2)} \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2^{n}}(z-2)^{n}= \\
& \begin{aligned}
&|z-2|<2=\frac{-1 / 2}{z-2}+\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2^{n+1}}(z-2)^{n} \quad \text { in } \Delta^{*}(2,2) \text {) } n \text {. } \\
& z
\end{aligned} \\
& f^{\prime}(z)=g(z)=\frac{1 / 2}{(z-2)^{2}}+\sum_{n=0}^{\infty} \frac{(n+1)(-1)^{n}}{2^{n+2}}(z-2)^{n}
\end{aligned}
$$

c) $D=\{z ;|z|>2\}$. We look for a series

$$
\begin{aligned}
& f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n} \text { valid in } D . \\
& f(z)=\frac{1}{2 z-z^{2}}=-\frac{1}{z^{2}} \frac{1}{1-\frac{2}{z}}=\frac{1}{z^{2}} \sum_{n=0}^{\infty} \frac{2^{n}}{z^{n}}= \\
& =\sum_{n=2}^{\infty} \frac{2^{n-2}}{z^{n}}=\sum_{n=-\infty}^{-2} \frac{z^{n}}{2^{n+2}} \frac{2}{z} k< \\
& f^{\prime}(z)=g(z)=\sum_{n=-\infty}^{-2} \frac{n z^{n-1}}{2^{n+2}}=\sum_{n=-\infty}^{-3} \frac{(n+1)}{2^{n+3}} z^{n}
\end{aligned}
$$

(2) Let $\gamma(t)=e^{i t}, 0 \leq t \leq 2 \pi$.

Calculate
when
a) $f(z)=z^{3} e^{-1 / z^{4}}$
b) $f(z)=\left(z^{2}+z\right) \sin \left(\frac{1}{z}\right)$

Solution: a) $f(z)=z^{3} e^{-1 / z^{4}}$ is analytic in $\mathbb{C} \backslash\{0\}$. Lat's expand in a Laurent series around 0. $\quad e^{w}=\sum \frac{1}{n!} w^{x}$ so

$$
\begin{aligned}
f(z) & =z^{3} e^{-1 / z^{4}}=z^{3} \sum_{n=0}^{\infty} \frac{1}{n!}(-1)^{n} z^{-4 n}= \\
& =z^{3}\left(1-\frac{1}{z^{4}}+\frac{1}{2} z^{8}-\frac{1}{3!2^{2}}+\ldots\right)= \\
& =z^{3}-\frac{1}{z}+\frac{1}{2} z^{5}-\cdots
\end{aligned}
$$

We see that

$$
\begin{aligned}
& \operatorname{Res}(0, f)=-1 \\
& \Rightarrow \int_{\gamma} z^{3} e^{-1 / z^{4}} d z=-2 \pi i
\end{aligned}
$$

b) We again need to identify singularities "inside" X. $f(z)=\left(z^{2}+z\right) \sin \left(\frac{1}{z}\right)$ has a singularity at $z=0$ since $\sin \left(\frac{1}{z}\right)$ is undetiuced there. Now $\sin w=\sum_{n=0}^{\infty}(-1)^{n} \frac{w^{2 n+1}}{(2 n+1)!}$ so

$$
\sin \left(\frac{1}{z}\right)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} z^{-2 n-1}=\frac{1}{z}-\frac{1}{6 z^{3}}+\frac{1}{5!z^{5}}-\cdots
$$

and $f(z)=\left(z^{2}+z\right)\left(\frac{1}{z}-\frac{1}{6 z^{3}}+\frac{1}{5!z^{5}}-\cdots\right)$

$$
=z+1-\frac{1}{6} \frac{1}{z}-\frac{1}{6} \frac{1}{z^{2}}+\cdots
$$

That is $\operatorname{Res}(0, f)=-\frac{1}{6}$ and

$$
\int_{\gamma}\left(z^{2}+z\right) \sin \left(\frac{1}{z}\right) d z=2 \pi i\left(-\frac{1}{6}\right)=-\frac{\pi i}{3}
$$

(3) Calculate $\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+\pi^{2}\right)^{2}} d x$
(tint: Evaluate $\lim _{R \rightarrow \infty} \int_{\gamma_{R}} \frac{e^{i z}}{\left(z^{2}+\eta^{2}\right)^{2}}{ }^{2 d z}$ where

$$
\begin{array}{r}
\left.\gamma_{R}=[-R, R]+\tilde{\gamma}_{R} \text { and } \begin{array}{r}
\tilde{\gamma}_{R}(t)=R e^{i t}, \\
0 \leqslant t \leqslant \pi
\end{array}\right) .
\end{array}
$$

Solution:

$$
e^{i x}=\cos x+i \sin x \text { on }[-R, R]
$$

and $\int_{-R}^{k} \frac{\sin x}{\left(x^{2}+\pi^{2}\right)^{2}} d x=0$ since $\sin x i$, odd.
So $\quad \int_{-R}^{R} \frac{e^{i x}}{\left(x^{2}+\pi^{2}\right)^{2}} d x=\int_{-e}^{e} \frac{\cos x}{\left(x^{2}+\pi^{2}\right)^{l}} d x$
We have $\left|\int_{\tilde{\gamma}_{R}} \frac{e^{i z}}{\left(z^{2}+\pi^{2}\right)^{2}} d z\right| \leq \int_{\tilde{\gamma}_{R}} \frac{1}{\left(R^{2}-\pi^{2}\right)^{2}}|d z| \leq \frac{\pi^{R}}{R^{4}}$
(Real par of $i z$) $\leqslant 0$ on $\tilde{\gamma}_{R}$ therefore $\left|e^{i z}\right| \leqslant c^{0}=1$
$\frac{e^{i t}}{\left(z^{2}+\pi^{2}\right)^{2}}$ has singularities at $z_{0}= \pm i \pi$ of order 2 .
Let's calculate $\operatorname{Res}\left(i \pi, \frac{e^{2 z}}{\left(z^{2}+\pi^{2}\right)}\right)=$

$$
\begin{aligned}
& =\lim _{z \rightarrow i \pi} \frac{d}{d z}\left[(z-i \pi)^{2} \frac{e^{i z}}{\left(z^{2}+\pi^{2}\right)^{2}}\right]= \\
& =\lim _{z \rightarrow i \pi} \frac{d}{d z}\left(\frac{e^{i t}}{(z+i \pi)^{2}}\right)=\lim _{z \rightarrow i \pi} i \frac{e^{i z}}{(z+i \pi)^{2}}-2 \frac{e^{i z}}{(z+i \pi)^{3}} \\
& =i \frac{e^{-i \pi}}{(2 i \pi)^{2}}-\frac{2 e^{-\pi}}{(2 i \pi)^{3}}=e^{-\pi}\left(\frac{i}{-4 \pi^{2}}-\frac{1}{4 n^{3}(-i)}\right) \\
& =i e^{-\pi}\left(-\frac{1}{4 \pi^{2}}-\frac{1}{4 \pi^{3}}\right)=-i \frac{e^{-\pi}}{4 \pi^{2}}\left(1+\frac{1}{\pi}\right)
\end{aligned}
$$

So, since $\lim _{R \rightarrow \infty} \int_{\tilde{\gamma}_{R}} \frac{e^{i z}}{\left(z^{2}+n^{2}\right)^{2}} d z=0$,
We get

$$
\begin{aligned}
\int_{-\infty}^{\infty} \frac{\cos x}{\left(x^{2}+\pi^{2}\right)^{2}} d x & =2 \pi i \operatorname{Res}\left(i \pi, \frac{e^{i z}}{\left(z^{2}+n^{2}\right)^{2}}\right)= \\
& =2 \pi i(-i) \frac{e^{-r}}{4 \pi^{2}}\left(1+\frac{1}{\pi}\right)= \\
& =\frac{e^{-\pi}}{2 \pi^{2}}(1+\pi)
\end{aligned}
$$

$\binom{$ if I didn't make }{ calculation errors }
(4) Calculate $\int_{|z-e|=2} \frac{1}{(z-1) \log (z \mid} d z$
where $\mid z$-e $\mid=2$ is positively oriented.
Solution

The integrand has a singularity at $z_{0}=1$ (since both $(z-1)$ and hog z are zero there). Let check if the singularity is a pole. We check the order of the zero
for $g(z)=(z-1) \log (z)$.

$$
\begin{array}{ll}
g^{\prime}(z)=\log (z)+\frac{z-1}{z} & g^{\prime}(1)=\log (1)+\frac{1-1}{1}=0 \\
g^{\prime \prime}(z)=\frac{1}{z}+\frac{1}{z^{2}} \quad g^{\prime \prime}(1)=1+1=2 \neq 0
\end{array}
$$

$\Rightarrow g$ has a zero of order 2 at $z_{0}=1$ and therefore $\frac{1}{(z-1) \log (z)}$ has a pole of order 2 at $z_{0}=1$.
We calculate $\operatorname{Res}\left(1, \frac{1}{(z-1) \log (z)}\right)=$

$$
\begin{aligned}
& =\lim _{z \rightarrow 1} \frac{d}{d z}\left(\frac{(z-1)^{2}}{(z-1) \log (z)}\right)^{\left(\frac{d}{d z}\right.} \frac{(z-1)}{\log (z)}=\frac{\log (z)-\frac{z-1}{z}}{[\log (z)]^{2}}=\frac{z \log (z)-z+1}{z(\log (z))^{2}} \\
& \lim _{z \rightarrow 1} \frac{z \log (z)-z+1}{z(\log (z))^{2}}=\lim _{z \rightarrow 1} \frac{\log (z)+\frac{z}{z}-1}{\log (2)^{2}+\frac{2 z}{z} \log (z)}= \\
& =\lim _{z \rightarrow 1} \frac{1}{\log (z)+2}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\int_{|z-e|=2} \frac{1}{(z-1) \log (z)} d z & =2 \pi i \operatorname{Res}\left(1, \frac{1}{(z-1) \log (z)}\right)= \\
& =2 \pi i \cdot \frac{1}{2}=\pi i
\end{aligned}
$$

