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Background & Motivation

▶ Most genomic profiling methods analyze cell populations

▶ We know that even cells of the same cell type can be different
▶ Genome: somatic mutations
▶ Transcriptome
▶ Epigenome
▶ . . .

▶ Recent technology development has made it possible to characterize individual cells at the
level of
▶ Transcriptome/RNA
▶ DNA
▶ Proteome
▶ DNA methylation
▶ Histone modifications
▶ Chromatin accessibility
▶ . . .
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Background & Motivation
Traditional v.s. Single-cell

Figure from https://scitechdaily.com/images/one-genome-from-many.jpg
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Background & Motivation

Single cell analysis has many important applications in molecular biology, biomedicine, etc.

Examples:

▶ Blood is a complex organ
▶ Molecular level profiling of whole blood sample provides average measurements across about

20 cell types present in blood

▶ Cancer research can greatly benefit from single cell technologies because
▶ Cancer progression can involve rare cell types that are difficult to quantify otherwise
▶ Tumour biopsies are heterogeneous, contain infiltrating cell types,
▶ etc.

→ Single-cell technologies can extract information separately for individual cell and thereby
for different blood cell types
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DROP-seq

Figure from (Macosko et al, 2015)
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DROP-seq
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DROP-seq

▶ Paired-end sequencing reads the barcodes and the actual RNA fragment/gene

Figure from (Macosko et al, 2015)
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DROP-seq

▶ Analysis of the paired-end sequencing reads from DROP-seq distinguishes cells and UMIs

▶ Assign each read to the“closest” cell based on the cell barcode

Figure from (Macosko et al, 2015)
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DROP-seq

▶ (Figure caption from (Macosko et al, 2015))

Figure from (Macosko et al, 2015)
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scRNA-seq data analysis

▶ While single-cell RNA sequencing (scRNA-seq) is structurally similar with data from bulk
RNA-seq, scRNA-seq has distinct characters:
▶ Abundance of zeros (both biological and technical): only ∼20% of gene expression counts

are non-zero
▶ Increased variability
▶ Complex expression distributions

→ scRNA-seq requires specific analysis methods
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Unique molecular identifiers (UMI)

▶ Due to a very small amount of starting material, RNA library needs to be amplified with
PCR

▶ Many of the sequenced reads are multiple PCR-copies of the original transcripts

▶ The DROP-seq protocol incorporates a unique molecular identifiers (UMI) for each RNA
fragment, which can be used to recover the counts of unique RNA molecules
▶ The DROP-seq protocol described above has 48 = 65536 different UMIs

→ Align the sequencing read corresponding to the RNA fragment (not the UMI) and then
count the unique UMIs for aligned sequencing reads
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Unique molecular identifiers (UMI)

▶ Align the sequencing read corresponding
to the RNA fragment (not the UMI) and
then count the unique UMIs for aligned
sequencing reads

▶ Because there are“only”48 = 65536
different UMIs, some truly different RNA
fragments can have the same UMI by
chance and one of them would be removed
if UMI control was applied before
alignment

Figure from (Smith et al, 2017)
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scRNA-seq analysis to identify cell types

▶ Single-cell sequencing protocols and analysis methods are under active research and
development

▶ The standard practices and methods have not yet been established

▶ Lets illustrate how scRNA-seq data can be analyzed using Seurat tool, following a guided
tutorial from http://satijalab.org/seurat/, to identify cell types from whole blood sample

▶ Data is from peripheral blood mononuclear cells (PBMC)

→ Lots of different cell types

▶ scRNA-seq from 2700 single PBMC cells

▶ One of the goals is to identify cells types from the PBMC scRNA-seq data

http://satijalab.org/seurat/
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scRNA-seq analysis: cell and UMI identification

▶ Sequencing read data is grouped by cells using the cell barcode
▶ Transcript part of each read is aligned to the genome and unique UMIs are counted for

each gene in each cell
▶ Distributions of cell-specific count data: the number of genes and UMIs

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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Get rid of doublets

▶ Doublets: Cells that end up in the same droplet
▶ Catching single cells is based on having much more droplets than cells. Most droplets will

have 0 cells, some will have 1, fewer will have 2 etc.
▶ If the total number of cells is e.g. 17000, a typical amount of doublets is 7-8 %

▶ Getting rid of them is extremely important!

▶ How?
▶ An unusually high total UMI count (or number of expressed genes) indicates that the cell

might be a doublet: e.g. threshold for less than 1500 detected genes and 4000 UMIs
▶ Optional: Use for example a tool called scds (Bais and Kostka 2019), which is based on

co-expression analysis. Cells with unusual co-expression patterns might be doublets.
▶ Optional: Reduce dimension, visualize, look for cells that are between clusters.
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scRNA-seq analysis: normalization

▶ Recall normalization methods for bulk RNA-seq (e.g. RPKM)

▶ Seurat implements a standard normalization: scale each cell by the total read count,
multiply by 10000, and take logarithm
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scRNA-seq analysis: highly variable genes

Focus analysis on highly variable genes (across cells)
▶ Compute empirical means and dispersions/variances
▶ Focus e.g. on ∼2000 genes
▶ This is a bit arbitrary selection step, but commonly used

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: remove unwanted variation

▶ Remove unwanted variation, if necessary, from measured read count ycg of gene g and cell
c using linear regression and use the regression residuals ecg for downstream analysis
▶ Better alternative: Do not try to remove it beforehand. Instead, account for the unwanted

variation later at the differential expression analysis step (use a model that can include
covariates)

▶ Possible sources of unwanted variation for cell c
▶ Sequencing batch effects: uc,batch
▶ Biological sources of variation (e.g. cell cycle stage): uc,cycle
▶ Sequencing read alignment rate per cell: uc,rate
▶ The number of detected molecules uc,UMI and mitochondrial gene expression uc,mito per cell c

▶ For example

ycg = a0 + a1uc,batch + a2uc,cycle + a3uc,rate + a4uc,UMI + a5uc,mito + ecg ,

▶ Denote the expression residuals for cell c and d genes as xc = [ec1, . . . , ecd ]
T ∈ Rd
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Preprocessing before cell type identification: summary

▶ Filter out dying cells (high number of mitochondrial genes expressed) and cells with
unusually high UMI counts

▶ Normalize

▶ Do everything you can to get rid of doublets

▶ Select highly variable genes

▶ Correct for batch effects and other unwanted variation (unless you will account for them
at the differential expression analysis)
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scRNA-seq analysis: dimensionality reduction

▶ Reduce dimensionality further by using
principle component analysis (PCA)

▶ Intuition: find a new basis vector
representation and represent the data
points in that new basis

▶ Find the basis vectors so that they are
oriented along the largest variation in the
data

388 Chapter 12. Latent linear models
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Figure 12.5 An illustration of PCA and PPCA where D = 2 and L = 1. Circles are the original data
points, crosses are the reconstructions. The red star is the data mean. (a) PCA. The points are orthogonally
projected onto the line. Figure generated by pcaDemo2d. (b) PPCA. The projection is no longer orthogonal:
the reconstructions are shrunk towards the data mean (red star). Based on Figure 7.6 of (Nabney 2001).
Figure generated by ppcaDemo2d.

where x̂i = Wzi, subject to the constraint that W is orthonormal. Equivalently, we can write this
objective as follows:

J(W,Z) = ||X − WZT ||2F (12.27)

where Z is an N × L matrix with the zi in its rows, and ||A||F is the Frobenius norm of matrix
A, defined by

||A||F =

√√√√
m∑

i=1

n∑

j=1

a2
ij =

√
tr(AT A) = ||A(:)||2 (12.28)

The optimal solution is obtained by setting Ŵ = VL, where VL contains the L eigenvectors
with largest eigenvalues of the empirical covariance matrix, Σ̂ = 1

N

∑N
i=1 xix

T
i . (We assume the

xi have zero mean, for notational simplicity.) Furthermore, the optimal low-dimensional encoding
of the data is given by ẑi = WT xi, which is an orthogonal projection of the data onto the column
space spanned by the eigenvectors.

An example of this is shown in Figure 12.5(a) for D = 2 and L = 1. The diagonal line is the
vector w1; this is called the first principal component or principal direction. The data points
xi ∈ R2 are orthogonally projected onto this line to get zi ∈ R. This is the best 1-dimensional
approximation to the data. (We will discuss Figure 12.5(b) later.)

In general, it is hard to visualize higher dimensional data, but if the data happens to be a
set of images, it is easy to do so. Figure 12.6 shows the first three principal vectors, reshaped
as images, as well as the reconstruction of a specific image using a varying number of basis
vectors. (We discuss how to choose L in Section 11.5.)

Below we will show that the principal directions are the ones along which the data shows
maximal variance. This means that PCA can be “misled” by directions in which the variance
is high merely because of the measurement scale. Figure 12.7(a) shows an example, where the
vertical axis (weight) uses a large range than the horizontal axis (height), resulting in a line that
looks somewhat “unnatural”. It is therefore standard practice to standardize the data first, or

Figure from (Murphy, 2012)



25/ 42

scRNA-seq analysis: dimensionality reduction

▶ Reduce dimensionality further by using principle component analysis (PCA)

▶ Normalized expression vectors for C cells x1, . . . , xC , xi ∈ Rd (d genes)

▶ Estimate the covariance matrix

S =
1

C − 1

C∑

i=1

(xi − µx)(xi − µx)
T ,

where µx =
1
C

∑C
i=1 xi

▶ The real-valued symmetric covariance matrix S can be written in a diagonalized form

S = VΛV T ,

where
▶ V = [v1, . . . , vd ] contains the orthogonal eigenvectors vi as columns
▶ Λ = diag(λ1, . . . , λd) is the diagonal matrix with eigenvalues on its diagonal
▶ Columns of V and Λ are typically ordered in decreasing order of eigenvalues λi ≥ λi+1
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scRNA-seq analysis: dimensionality reduction

▶ Take the k ≤ d (typically k ≪ d) largest eigenvalues and use the corresponding
eigenvectors to form a d × k matrix

Wk = [v1, . . . , vk ]

▶ The PCA transformed data are yi = W T
k xi ∈ Rk

▶ Orthogonal transformation, each component chosen to have the largest variance

▶ 9 PCA components in this example

▶ That is, each cell i is represented by a 9-dimensional expression vector yi = W T
9 xi ∈ Rk
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scRNA-seq analysis: visualization

▶ Visualization of the two most important PCA components

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: clustering

▶ The final clustering for the 9-dimensional representation of cells using a graph-based
clustering method
▶ The Euclidean distance between two cells in the PCA space
▶ K-nearest neighbor (KNN) graph: edges drawn between cells with similar gene expression

profiles
▶ The edge weights between any two cells is based on the shared overlap in their local

neighborhoods (Jaccard distance)
▶ Optimize modularity in the network

▶ Visualize the clustering result and the data in 2-D using the t-distributed stochastic
neighbor embedding (tSNE)
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tSNE: t-distributed stochastic neighbor

▶ Visualize the clustering result and the data in 2-D using the t-distributed stochastic
neighbor (tSNE) embedding (tSNE)

▶ tSNE is a nonlinear dimensionality reduction technique

▶ Input: data in the k-dimensional PCA space y1, . . . , yC
▶ Probability distribution centered on yi : probability of sampling data item yj

pj|i =
exp(−||yj − yi ||2/2σ2

i )∑
k ̸=j exp(−||yk − yi ||2/2σ2

i )
,

where σ2
i is a parameter

▶ A probability distribution over data item pairs: yi and yj

pij =
pj|i + pi|j

2C
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tSNE: t-distributed stochastic neighbor

▶ tSNE tries to learn a new map z1, . . . , zC in a lower dimensional space (typically 2-D) such
that the similarities between the cells are preserved

▶ Distances between cells cannot be maintained exactly in a lower dimensional space, so we
need to accept some errors between maps

▶ Model such errors robustly using a heavy-tailed distribution

▶ Motivated by heavy-tailed t-distribution, similarities qij are defined as

qij =
(1 + ||zj − zi ||2)−1

∑
k ̸=j(1 + ||zk − zi ||2)−1

▶ The locations of the cells zi ∈ R2 are optimized using e.g. gradient descent such that the
(non-symmetric) Kullback-Leibler divergence of the distribution Q from the distribution P
is minimized

KL(P||Q) =
∑

i,j

pij log
pij
qij
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scRNA-seq analysis: clustering & visualization

▶ Visualization of the clustering results in 2-D using tSNE

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: cluster biomarkers

▶ Identify genes differentially expressed between clusters (=cell types)

▶ Differential expression in one cell type relative to all other cell types

→ Biomarkers for cell types

▶ Several possible methods
▶ (t-test)
▶ Wilcoxon rank sum test
▶ Likelihood-ratio test based on zero-inflated models
▶ Receiver operating characteristics (ROC) analysis that measures classification power for

individual genes
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scRNA-seq analysis: cluster biomarkers

▶ Visualization of cell type specific biomarkers

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: cluster biomarkers

▶ Visualization of cell type specific cluster biomarkers

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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scRNA-seq analysis: cluster biomarkers

▶ Assign cell types based on the biomarkers

Figure from http://satijalab.org/seurat/

http://satijalab.org/seurat/
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Recap from lecture 6: negative binomial regression
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Recap from lecture 6: negative binomial regression
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Zero-inflated negative binomial (ZINB)

▶ Single cell RNAseq read count data is
zero-inflated for both biological and
technical reasons

▶ ZINB: a two-component mixture model
where the probability of zero reads is
determined by both the NB and the
Bernoulli

Ygj =

{
Ngj if Hgj = 0

0 otherwise

Hgj ∼ Bernoulli(πgj)

Ngj ∼ NB(sjλgj , ϕg )

Typical read count distribution of one gene across 4000 cells
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Zero-inflated negative binomial (ZINB) regression

▶ Strengths:
▶ Natural choice for single cell RNA-seq data (the model reflects the data generation process)
▶ Flexibility: different types of covariates (continuous or binary, fixed or random) can be

included in the linear models for πgj and λgj

▶ Weakness:
▶ Likelihood maximization is slow
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Linear hurdle model: a quicker alternative to ZINB

MAST (”Model-based Analysis of Single cell Transcriptomics”, Finak et al. 2015) is a
well-known hurdle model (two-part model) for single cell RNA-seq data

1. log(transcripts per million + 1)
2. Two-part regression:

▶ Logistic regression for 0 vs. >0
▶ Linear Gaussian regression for counts>0

Finak et al. 2015
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