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Background & Motivation

» Most genomic profiling methods analyze cell populations

» We know that even cells of the same cell type can be different
» Genome: somatic mutations
» Transcriptome
> Epigenome
> ..

» Recent technology development has made it possible to characterize individual cells at the
level of
» Transcriptome/RNA
DNA
Proteome
DNA methylation
Histone modifications
Chromatin accessibility
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Background & Motivation

ONE GENOME FROM MANY

Sequencing the genomes of single cells is similar to sequencing
those from multiple cells — but errors are more likely.

» Standard genome sequencing

A sample containing thousands to DNA is extracted from all the nuclei. DNA is broken into fragments The sequences are assembled to give a
millions of cells is isolated. and then sequenced. common, ‘consensus’ sequence.

» Single-cell sequencing

s
$% ﬂ‘pDNA amplification

Asingle cell is difficult to isolate, but The DNA is extracted and amplified, Amplified DNA is sequenced. Errors introduced in earlier steps make
it can be done mechanically or with during which errors can creep in sequence assembly difficult; the final
an automated cell sorter. sequence can have gaps.

Figure from https://scitechdaily.com /images/ g fr .jpg.




Background & Motivation

Single cell analysis has many important applications in molecular biology, biomedicine, etc.

Examples:
» Blood is a complex organ

» Molecular level profiling of whole blood sample provides average measurements across about
20 cell types present in blood



Background & Motivation

Single cell analysis has many important applications in molecular biology, biomedicine, etc.

Examples:

» Blood is a complex organ

» Molecular level profiling of whole blood sample provides average measurements across about
20 cell types present in blood

» Cancer research can greatly benefit from single cell technologies because
» Cancer progression can involve rare cell types that are difficult to quantify otherwise
» Tumour biopsies are heterogeneous, contain infiltrating cell types,
> etc.

— Single-cell technologies can extract information separately for individual cell and thereby

for different blood cell types



Contents

» Background & Motivation
» Single cell sequencing technologies
» Data preprocessing, visualization and cell type annotation

» Differential expression analysis



DROP-seq
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DROP-seq
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Figure 1. Molecular Barcoding of Cellular Transcriptomes in Droplets

(A) Drop-Seq barcoding schematic. A complex tissue is dissociated into individual cells, which are then encapsulated in droplets together with microparticles
(gray circles) that deliver barcoded primers. Each cell is lysed within a droplet; its mMRNAs bind to the primers on its companion microparticle. The mRNAs are
reverse-transcribed into cDNAs, generating a set of beads called “single-cell transcriptomes attached to microparticles” (STAMPs). The barcoded STAMPs can
then be amplified in pools for high-throughput mRNA-seq to analyze any desired number of individual cells.

(B) Sequence of primers on the microparticle. The primers on all beads contain a common sequence (“PCR handle”) to enable PCR amplification after STAMP
formation. Each microparticle contains more than 10° individual primers that share the same “cell barcode” (C) but have different unique molecular identifiers
(UMIs), enabling mRNA transcripts to be digitally counted (D). A 30-bp oligo dT sequence is present at the end of all primer sequences for capture of mRNAs.
(C) Split-and-pool synthesis of the cell barcode. To generate the cell barcode, the pool of microparticles is repeatedly split into four equally sized oligonucleotide
synthesis reactions, to which one of the four DNA bases is added, and then pooled together after each cycle, in a total of 12 split-pool cycles. The barcode
synthesized on any individual bead reflects that bead’s unique path through the series of synthesis reactions. The result is a pool of microparticles, each
possessing one of 4'2 (16,777,216) possible on its entire 1t of primers (see also Figure S1).

(D) Synthesis of a unique molecular identifier (UMI). Following the completion of the “split-and-pool” synthesis cycles, all microparticles are together subjected to
eight rounds of degenerate synthesis with all four DNA bases available during each cycle, such that each individual primer receives one of 4° (65,536) possible
sequences (UMIs).

Figure from (Macosko et al, 2015)



DROP-seq
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Figure from (Macosko et al, 2015)



DROP-seq

» Paired-end sequencing reads the barcodes and the actual RNA fragment/gene

Sample sequencing read-pair
Read 1 Read 2

<

Cell  uml Gene identity
barcode

Figure from (Macosko et al, 2015)



DROP-seq

» Analysis of the paired-end sequencing reads from DROP-seq distinguishes cells and UMlIs

> Assign each read to the “closest” cell based on the cell barcode

D cal
barcode UMI cDNA (50-bp sequenced)
———— —_—
—
AAATTATGACGATGTGETEG. . . .cacTacac

TTGCCGTOGTGTTATGGAGS, . . .
AGTCCATGTGCGGCAGGTTT. .
ARATTATGACGAAGTTIGTA. .

TeTAGGCT. .
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Figure from (Macosko et al, 2015)
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DROP-seq

» (Figure caption from (Macosko et al, 2015))

Figure 2. Extraction and Processing of Single-Cell Transcriptomes by Drop-Seq
(A) Schematic of single-cell mMRNA-seq library preparation with Drop-seq. A custom-designed microfluidic device joins two aqueous flows before their
compartmentalization into discrete droplets. One flow contains cells, and the other flow contains barcoded primer beads suspended in a lysis buffer. Immediately
following droplet formation, the cellis lysed and releases its MRNAs, which then hybridize to the primers on the microparticle surface. The droplets are broken by
adding a reagent to destabilize the oil-water interface (Experimental Procedures), and the microparticles collected and washed. The mRNAs are then reverse-
transcribed in bulk, forming STAMPSs, and template switching is used to introduce a PCR handle downstream of the synthesized cDNA (Zhu et al., 2001).
(B) Microfluidic device used in Drop-seq. Beads (brown in image), suspended in a lysis agent, enter the device from the central channel; cells enter from the top
and bottom. Laminar flow prevents mixing of the two aqueous inputs prior to droplet formation (see also Movie S1). Schematics of the device design and how it is
operated can be found in Figure S2.
(C) Molecular elements of a Drop-seq sequencing library. The first read yields the cell barcode and UMI. The second, paired read interrogates sequence from the
cDNA (50 bp is typically sequenced); this sequence is then aligned to the genome to determine a transcript’s gene of origin.
(D) In silico reconstruction of thousands of single-cell transcriptomes. Millions of paired-end reads are generated from a Drop-seq library on a high-throughput
sequencer. The reads are first aligned to a reference genome to identify the gene-of-origin of the cDNA. Next, reads are organized by their cell barcodes,
and individual UMIs are counted for each gene in each cell (Supplemental Experimental Procedures). The result, shown at far right, is a “digital expression matrix”
in which each column corresponds to a cell, each row corresponds to a gene, and each entry is the integer number of transcripts detected from that gene, in
that cell.

Figure from (Macosko et al, 2015)
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scRNA-seq data analysis

» While single-cell RNA sequencing (scRNA-seq) is structurally similar with data from bulk
RNA-seq, scRNA-seq has distinct characters:
» Abundance of zeros (both biological and technical): only ~20% of gene expression counts
are non-zero
» Increased variability
» Complex expression distributions

— scRNA-seq requires specific analysis methods



Unique molecular identifiers (UMI)

» Due to a very small amount of starting material, RNA library needs to be amplified with
PCR

» Many of the sequenced reads are multiple PCR-copies of the original transcripts



Unique molecular identifiers (UMI)

» Due to a very small amount of starting material, RNA library needs to be amplified with
PCR
» Many of the sequenced reads are multiple PCR-copies of the original transcripts

» The DROP-seq protocol incorporates a unique molecular identifiers (UMI) for each RNA
fragment, which can be used to recover the counts of unique RNA molecules

» The DROP-seq protocol described above has 4% = 65536 different UMIs

— Align the sequencing read corresponding to the RNA fragment (not the UMI) and then
count the unique UMIs for aligned sequencing reads



Unique molecular identifiers (UMI)

» Align the sequencing read corresponding
to the RNA fragment (not the UMI) and
then count the unique UMIs for aligned
sequencing reads

» Because there are “only” 48 = 65536
different UMIs, some truly different RNA
fragments can have the same UMI by
chance and one of them would be removed
if UMI control was applied before
alignment

Sequencing and bioinformatics

= E=

3 Unique 2
molecules

Figure from (Smith et al, 2017)




scRNA-seq analysis to identify cell types

>

Single-cell sequencing protocols and analysis methods are under active research and
development

The standard practices and methods have not yet been established

Lets illustrate how scRNA-seq data can be analyzed using Seurat tool, following a guided
tutorial from http://satijalab.org/seurat/, to identify cell types from whole blood sample
Data is from peripheral blood mononuclear cells (PBMC)

— Lots of different cell types
scRNA-seq from 2700 single PBMC cells

One of the goals is to identify cells types from the PBMC scRNA-seq data


http://satijalab.org/seurat/

scRNA-seq analysis: cell and UMI identification

» Sequencing read data is grouped by cells using the cell barcode

» Transcript part of each read is aligned to the genome and unique UMIs are counted for
each gene in each cell

» Distributions of cell-specific count data: the number of genes and UMIs
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Get rid of doublets

» Doublets: Cells that end up in the same droplet

» Catching single cells is based on having much more droplets than cells. Most droplets will
have 0 cells, some will have 1, fewer will have 2 etc.
> If the total number of cells is e.g. 17000, a typical amount of doublets is 7-8 %

» Getting rid of them is extremely important!



Get rid of doublets

» Doublets: Cells that end up in the same droplet
» Catching single cells is based on having much more droplets than cells. Most droplets will
have 0 cells, some will have 1, fewer will have 2 etc.
> If the total number of cells is e.g. 17000, a typical amount of doublets is 7-8 %

» Getting rid of them is extremely important!
> How?
» An unusually high total UMI count (or number of expressed genes) indicates that the cell
might be a doublet: e.g. threshold for less than 1500 detected genes and 4000 UMls
> Optional: Use for example a tool called scds (Bais and Kostka 2019), which is based on

co-expression analysis. Cells with unusual co-expression patterns might be doublets.
» Optional: Reduce dimension, visualize, look for cells that are between clusters.



scRNA-seq analysis: normalization

» Recall normalization methods for bulk RNA-seq (e.g. RPKM)

» Seurat implements a standard normalization: scale each cell by the total read count,
multiply by 10000, and take logarithm



scRNA-seq analysis: highly variable genes

Focus analysis on highly variable genes (across cells)
» Compute empirical means and dispersions/variances
» Focus e.g. on ~2000 genes
» This is a bit arbitrary selection step, but commonly used
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scRNA-seq analysis: remove unwanted variation

» Remove unwanted variation, if necessary, from measured read count y., of gene g and cell
c using linear regression and use the regression residuals e, for downstream analysis
> Better alternative: Do not try to remove it beforehand. Instead, account for the unwanted
variation later at the differential expression analysis step (use a model that can include
covariates)



scRNA-seq analysis: remove unwanted variation

» Remove unwanted variation, if necessary, from measured read count y., of gene g and cell
c using linear regression and use the regression residuals e, for downstream analysis

> Better alternative: Do not try to remove it beforehand. Instead, account for the unwanted
variation later at the differential expression analysis step (use a model that can include
covariates)

» Possible sources of unwanted variation for cell ¢

> Sequencing batch effects: uc patch

> Biological sources of variation (e.g. cell cycle stage): uc,cycle

> Sequencing read alignment rate per cell: uc rate

» The number of detected molecules uc ym and mitochondrial gene expression uc, mito per cell ¢

» For example

Yeg = ao + a1 Uc batch + a2uc,cyc|e + aszUc rate + dgUc uymi + as Uc, mito + ecg7

» Denote the expression residuals for cell ¢ and d genes as x. = [ec1, .. ., ecd]T eRY



Preprocessing before cell type identification: summary

» Filter out dying cells (high number of mitochondrial genes expressed) and cells with
unusually high UMI counts

Normalize
Do everything you can to get rid of doublets
Select highly variable genes

vvyyvyy

Correct for batch effects and other unwanted variation (unless you will account for them
at the differential expression analysis)



scRNA-seq analysis: dimensionality reduction

» Reduce dimensionality further by using
principle component analysis (PCA)

» Intuition: find a new basis vector
representation and represent the data
points in that new basis

» Find the basis vectors so that they are
oriented along the largest variation in the
data

O

0
Figure from (Murphy, 2012)



scRNA-seq analysis: dimensionality reduction

» Reduce dimensionality further by using principle component analysis (PCA)
» Normalized expression vectors for C cells xy,...,xc, x; € R? (d genes)

» Estimate the covariance matrix
c
-
Z ,UX)

1 C
where fix = &> i1 X;
» The real-valued symmetric covariance matrix S can be written in a diagonalized form

S=VAVT,
where
» V =|vi,...,vq] contains the orthogonal eigenvectors v; as columns
> A =diag(A1,...,Aq) is the diagonal matrix with eigenvalues on its diagonal

» Columns of V and A are typically ordered in decreasing order of eigenvalues \; > A1



scRNA-seq analysis: dimensionality reduction

> Take the k < d (typically k < d) largest eigenvalues and use the corresponding
eigenvectors to form a d x k matrix

Wk = [vl,...,vk]
» The PCA transformed data are y; = Wka,- € Rk

» Orthogonal transformation, each component chosen to have the largest variance

» 9 PCA components in this example

» That is, each cell i is represented by a 9-dimensional expression vector y; = W, x; € Rk



scRNA-seq analysis: visualization

» Visualization of the two most important PCA components

20

PC2

PC1
Figure from http://satijalab.org/seurat/
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scRNA-seq analysis: clustering

» The final clustering for the 9-dimensional representation of cells using a graph-based
clustering method

» The Euclidean distance between two cells in the PCA space

» K-nearest neighbor (KNN) graph: edges drawn between cells with similar gene expression
profiles

» The edge weights between any two cells is based on the shared overlap in their local
neighborhoods (Jaccard distance)

» Optimize modularity in the network

» Visualize the clustering result and the data in 2-D using the t-distributed stochastic
neighbor embedding (tSNE)



tSNE: t-distributed stochastic neighbor

» Visualize the clustering result and the data in 2-D using the t-distributed stochastic
neighbor (tSNE) embedding (tSNE)

» tSNE is a nonlinear dimensionality reduction technique

v

Input: data in the k-dimensional PCA space y1,...,yc
> Probability distribution centered on y;: probability of sampling data item y;

exp(—|ly; — yill?/207)
5 exp(— Ik — yill2/207)’

Pjli =

2

where o7 is a parameter

> A probability distribution over data item pairs: y; and y;

Pili 7 Piy
Pi= "¢



tSNE: t-distributed stochastic neighbor

» tSNE tries to learn a new map zj,...,z¢ in a lower dimensional space (typically 2-D) such
that the similarities between the cells are preserved

» Distances between cells cannot be maintained exactly in a lower dimensional space, so we
need to accept some errors between maps

» Model such errors robustly using a heavy-tailed distribution



tSNE:

>

t-distributed stochastic neighbor

tSNE tries to learn a new map zj,...,z¢ in a lower dimensional space (typically 2-D) such
that the similarities between the cells are preserved

Distances between cells cannot be maintained exactly in a lower dimensional space, so we
need to accept some errors between maps

Model such errors robustly using a heavy-tailed distribution
Motivated by heavy-tailed t-distribution, similarities g;; are defined as

(1+]lzj =z~
2oL+ llzie =zl )1

qij =

The locations of the cells z; € R? are optimized using e.g. gradient descent such that the
(non-symmetric) Kullback-Leibler divergence of the distribution @ from the distribution P

is minimized
KL(P||IQ) = ZPU |Og



scRNA-seq analysis: clustering & visualization

» Visualization of the clustering results in 2-D using tSNE
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scRNA-seq analysis: cluster biomarkers

» Identify genes differentially expressed between clusters (=cell types)
» Differential expression in one cell type relative to all other cell types
— Biomarkers for cell types
» Several possible methods
> (t-test)
» Wilcoxon rank sum test
» Likelihood-ratio test based on zero-inflated models
> Receiver operating characteristics (ROC) analysis that measures classification power for
individual genes



scRNA-seq analysis: cluster biomarkers

» Visualization of cell type specific biomarkers
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scRNA-seq analysis: cluster biomarkers

» Visualization of cell type specific cluster biomarkers
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scRNA-seq analysis: cluster biomarkers

» Assign cell types based on the biomarkers
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Recap from lecture 6: negative binomial regression

» We will look at edgeR (McCarthy et al., 2012), a versatile and efficient modeling method
for sequencing count data

» edgeR model assumes that the number of aligned reads in sample j that are assigned to
gene g can be modelled by negative binomial distribution (note: mean-dispersion
reparametrization)

Ngj ~ NB(sjAgj. 0g)
where

> s; is the so-called library size: e.g. the total number of reads from sample j, or some other
normalization quantity
> Mg is the proportion of RNA fragments that originate from gene g in sample j

> Note that 3°_ Ag =1
» (g is the dispersion for gene g that defines the over-dispersion and thus the variance in the
negative binomial model



Recap from lecture 6: negative binomial regression

> Often one is interested in comparing two populations A and B, i.e., Hy : Aga = A8

» edgeR implements a general linear model (GLM) with NB distribution that allows
comparison of two population means as well as many other more complex experimental
designs

> In GLM the mean [i5; = s;\g of the NB is modeled with a log-linear model

-
logA\y; = X/ B,
log g = xJ-T,Bg + log s;
P
logjgi = Bo+ ij-k 3ok + log 57,
k=1

> x; is a vector that contains all p covariates for sample j, and
> ,Sg is a vector that contains the corresponding parameters for gene g

» The mean of the NB distribution is p1z; = exp(x}—ﬁg +log s;)

> Recall that variance is defined as 7 + o,uéj



Zero-inflated negative binomial (ZINB)

» Single cell RNAseq read count data is
zero-inflated for both biological and
technical reasons

» ZINB: a two-component mixture model
where the probability of zero reads is
determined by both the NB and the
Bernoulli

500 1000 1500 2000 2500 3000

Y'—{Ngj if Hgl:O T ”nnn\nn T T T T 1

0 otherwise 0 5 10 15 20 25 30

Typical read count distribution of one gene across 4000 cells

0
L

Hgj ~ Bernoulli(mgj)

Ngj ~ NB(sjAgj, ¢¢)



Zero-inflated negative binomial (ZINB) regression

> Strengths:
» Natural choice for single cell RNA-seq data (the model reflects the data generation process)
> Flexibility: different types of covariates (continuous or binary, fixed or random) can be
included in the linear models for g and Mg
> Weakness:

» Likelihood maximization is slow



Linear hurdle model: a quicker alternative to ZINB

MAST ("Model-based Analysis of Single cell Transcriptomics”, Finak et al. 2015) is a
well-known hurdle model (two-part model) for single cell RNA-seq data

1. log(transcripts per million 4 1)
2. Two-part regression:
> Logistic regression for 0 vs. >0
> Linear Gaussian regression for counts>0

logit(Pr(Zi; = 1)) = X; [55

N
AN

\\
N
Empirical Bayes
shrinkage for the residual

Pr(Yy =yZy = 1) = NG(JS; Ué)

s such as status
thy), cell cycle score,
percentage of ribosomal genes,

cellular detection rate

Covariates

Finak et al. 2015
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