CS-E5875 High-Throughput Bioinformatics
Machine learning for scRNA-seq analysis

Harri Lahdesmaki

Department of Computer Science
Aalto University

December 1, 2023

Contents

» Neural networks: basics
» Cell type identification
» Variational autoencoder

» Single-cell variational autoencoder

Generalized linear model for binary-valued data

» Recall again the generalized linear modeling (GLM) framework

» Consider data D = {(x1,y1),- .-, (Xn, ¥n)), where x; = (x1,. .. 7x,-k)T denotes the
explanatory variables and the response variable y; can have only two possible value: {0,1}

» Binary data can be modeled using the Bernoulli probability density function:
Ber(y | p) = p(1 - p)' ™,

where p is the probability of success, or the mean (parameter) as E(Y) = p

Generalized linear model for binary-valued data

» Recall again the generalized linear modeling (GLM) framework

» Consider data D = {(x1,y1),- .-, (Xn, ¥n)), where x; = (x1,. .. ,x,-k)T denotes the
explanatory variables and the response variable y; can have only two possible value: {0,1}

» Binary data can be modeled using the Bernoulli probability density function:
Ber(y | p) = p(1 - p)' ™,

where p is the probability of success, or the mean (parameter) as E(Y) = p
» In GLM framework we want to model p using a linear model via a link function
» For binary data the following link function is useful

1
1+ exp(—(x] B+ Bo))

where sigm : R — [0, 1] is the sigmoidal function that maps the real line to the interval
between 0 and 1

» Therefore, our model is Ber(y; | sigm(x;] B3 + /3))

log <1p,p> =x/B+pH < p= = sigm(x/ B+ o),

Logistic regression

» Machine learning terminology:
> The sigmoidal function is called the activation function and denoted here as ¢(-)
» The GLM model for binary data is called the logistic regression model or linear classifier and
is denoted as y = f(x) = ¢(x" B+ Bo) = ¢(B7x + Bo)
> lllustrations of the sigmoidal activation function (left) and linear classifiers for two
covariates (right)

1 - - w=(1,4) W=(5,4)
P sigmoi 51) .
09 — — probit | weiza ™2 - |§ @
08l 4r | M- Py P
N W=(0,2) W=(2,2)
07k 3 P e . P
N W=(5,1)
oL z§/ l‘ o
L E S [
06 T e w0 3;]@
0.5F 1 [n:](/ 0s] , nxy o x“z
W22 $ o 8 B
o)) We(2,-2)
03t - PR ~;Ww
02f -2 CSmy
01t _3-
. . . . , , , , , , ,
-6 4 6 -3 -2 -1 0 1 2 3 4 5 6

Figures from (Murphy, 2012)

Neural networks: Perceptron

>

| 4
>

Some machine learning / neural network models are inspired by neuroscience and can be
seen as models which try to mimic information processing in brain

The first neural network model by Rosenblatt was called perceptron

Perceptron is essentially the logistic regression model where the activation function is the
step function

y = f(x) = sign(8"x + fo),
where sign(x) =0 if x <0, and sign(x) =1if x >0
Term perceptron is nowadays used to denote the logistic regression model with an
activation function that is typically something else than the step function

Linear classifier and perceptron are limited in that they can only solve linear classification
problems (where two classes are linearly separable)

Multilayer perceptron

>

>

Multilayer perceptron (MLP) is the most
basic type of deep neural network model

MLP combines several linear classifiers
(perceptrons) such that outputs of the
perceptrons in the previous layer are used
as the inputs to the linear classifier in the
next layer

Each node in the network implements the
function

y =f(x) = p(w'x+b),

where w and b are the linear model
weights that are different for each node

</
K
o5
"
g
‘\\

)

\/
KX
X
(X

()

AN
e \ \
LY
Wi
@7
N

<
e
N
X%
N

O\
(/

o
<)
‘V
&
A

U
[\
O

\
g
X

(
\
@

Figure from (Murphy, 2020)

Multilayer perceptron

» The nodes at the bottom correspond to y
the input x

» h; denotes the outputs of the perceptrons
in the first layer (W1 = (wy1,...,W1ipy))

N

<
v
57
&
"
‘x:x‘
N

(X
X
o

7

h; = (¢(W1Tlx + bi1),. .., ¢(W1me + blm))T
= (W] x + by),

()
O

N/,
N
N
)
)
G
78
/

» h, denotes the outputs of the perceptrons
in the 2nd layer (W5 = (wa1, ..., Wam))

AN
A
»
04
\Y/
U

</
1A
N
R
¥
%
Q\

\Ne
§\
X
o
%
//
/,‘

hy = (¢(warhy + b1, ..., p(wyhy + bom)) T
= ¢(W, h; + by)

W
A"’A '
X
I

%

@
(]
@
./

» Output is y = ¢)(wJ hy + bs)

Figure from (Murphy, 2020)

Multilayer perceptron

» The MLP model can be written more
compactly as

y = f3(f2(f1(x; 61); 02); 03),

where fi(+; 01), fa(+; 62) and f5(+; 63) are
the perceptrons from the previous page
(that have outputs hy, hy, y) and

9,‘ = (W,‘, b,‘), 9,‘ = (W,‘,b,‘), and

03 = (w3, bs)

> Alternatively write
y =f(x6),

where 6 = (01, 92, 03)

No< 7
/8
\I l:»,
W
AXA
e
DR
AXEe
X

N\
@)
X
9!
s
®

Y

<
1A
W
0%
X
A
&
QA

)
"2

\/
X
%

20

&

X

"\
/

W
X
X
IR
&

O
\
D
W,
X
)

Figure from (Murphy, 2020)

Multilayer perceptron:

» Although our example MLP has two

A

hidden layers, in general MLPs can have

any number of layers

» Each layer can have an arbitrary number

h,

width)
» MLPs can use different types of activation

of nodes (

\ \ 3
XXX
QUK XL
“%«.«aﬁw&.«a\

@:!: @l

N e 0

@ ?‘S?«.
:ed

ANV
0. g

functions

?~.

—
= s

Figure from (Murphy, 2020)

Multilayer perceptron: likelihood and inference

» Binary classification: choose the activation function for the last layer to be e.g. the
sigmoidal function () = sigm(-) and use the Bernoulli likelihood for the data D

£(8)=p(D|8) = HBery,|fx,, 0))

i=1

Multilayer perceptron: likelihood and inference

» Binary classification: choose the activation function for the last layer to be e.g. the
sigmoidal function () = sigm(-) and use the Bernoulli likelihood for the data D

£(8)=p(D|8) = HBery,|fx,, 0))

i=1

» Regression assuming additive Gaussian noise: the activation function for the last layer can
be the identity function and use the Gaussian likelihood

£(6)=p(D|6) =[Nl f(xi:0),0%)

i=1

Multilayer perceptron: likelihood and inference

>

Binary classification: choose the activation function for the last layer to be e.g. the
sigmoidal function () = sigm(-) and use the Bernoulli likelihood for the data D

£(8)=p(D|8) = HBery,|fx,, 0))

i=1

Regression assuming additive Gaussian noise: the activation function for the last layer can
be the identity function and use the Gaussian likelihood

£(6)=p(D|6) =[Nl f(xi:0),0%)

i=1

The large number of parameters of the model can be chosen by maximizing the likelihood

No closed form solution but the parameters can be optimized iteratively using numerical

optimization methods
Jdlog L

(s+1) ._ g(s)
0 =0+ A——— 20

9(s)

Multilayer perceptron: illustration

» Deep MLP can learn complex functions

<

Figure by Cagatay Yildiz

11/ 32

Contents

» Neural networks: basics
» Cell type identification
» Variational autoencoder

» Single-cell variational autoencoder

Cell type identification with neural networks

» Computational cell type identification is an important step in scRNA-seq analysis
» Several cell type annotation methods rely on unsupervised clustering

> We we will look at a supervised cell type annotation method that uses deep learning
method which is trained on a data set of labelled single cells

Automated cell type identification using neural networks (ACTINN)

>

v

vvyvyyVvyy

ACTINN (Ma and Pellegrini, 2019) is one of the many recently proposed supervised
methods for cell type identification that use deep learning methods

Labelled single-cell gene expression profiles D = ((x1, 1), - - -, (X, ¥n)) are collected from
different databases

The number of cell types is denoted by k, y; € {1,...,k}

The method uses only those genes that appear in all the databases

Genes with the highest 1% and lowest 1% mean expression are ignored

Genes with the highest 1% and lowest 1% standard deviation are ignored

The normalized gene expression vector x; € R for d genes in cell i is obtained as
10% - (%, +1)

Xj = |Og2 N-:)
i

where X; denotes the raw gene expression counts for all d genes and N; is the total gene
expression (count) measured for cell i

Automated cell type identification using neural networks (ACTINN)
» ACTINN uses the MLP with three hidden layers that have widths 100, 50 and 25
y = fa(f3(f2(f1(x; 01); 02); 03); 04)

with Relu activation function Relu(h) = max(0, h) for the hidden layers and the softmax
activation (or link function) for f,

softmax(h)_< eph(t) . exp(h(k))
> =1 exp(h(j)) > exp(h()))

that maps the neural network outputs to k probabilities that sum up to one and thus
allows modeling k cell types

> The model is trained using the multi-class extension of the Bernoulli likelihood (i.e.,
likelihood for categorical random variable) based loss function

Automated

cell type identification using neural networks (ACTINN)

B —caiyse 10X Ss2
8ot 8 cell 8519 3437
Dowsacmsse Cardiac Muscle 60 128
pendonsaicel Endothelial cell 3645 3859
Giakiing Epidermis 7492 2066
e~ !
A Epithelial cell 1316 3422
oo ErYthTOCYtE 155 75
JI—. Granulocyte 1097 750
Marccye Hepatocyte 1764 388
et Monocyte 1256 1602
e NK cell 1049 262
Stromal cell 3165 2807
Toel 5648 2150
D Total 35166 20946
100] —ewe—m .
9075 ; :j
g N
Fooso
9025
9000
0CTan 0XTest 527an 882 Test
s
o
38
o5
00
g = g =

E] k3 E] o
Number of Epochs Number of Epochs

Figure from (Ma and Pellegrini, 2019)

16/ 3

Comparison

Mean F1 score Accuracy (%)

Mean MCC

8 8 8 8

o

08

06

04

02

0

02

of cell type ldentification methods

78.39%

70.86% 72.00%
44.03% i
3665
24.63%
17.76% - 17.51% 15.23% 1057%
0.02%

051 0.49
043
035
020 020 020
0.1

0.01

* 046 041

029 027

023 - 023

015 0.19

*0.49
028
020 0.19

scDeepSort CellAssign Gamett SingleR scMap-cell scMap-cluster ACTINN CHETAH sclD

Figure from (Shao et al., 2021)

SCINA scPred singleCellNet SVM

Contents

» Neural networks: basics
» Cell type identification
» Variational autoencoder

» Single-cell variational autoencoder

Dimension reduction

» In the previous lecture we discussed about PCA and how it can be used for dimension
reduction and to analyze high-dimensional scRNA-seq data

» In this lecture we will look at some more advanced dimension reduction methods that can
be presented as generative models

Probabilistic factor analysis
» Probabilistic factor analysis model can be described as the following generative model

p(z) = N(z | 0.1)
p(x | 2) = N(x | Wz + 1, W),

where z € R is a low-dimensional latent variable and x € RP denotes observed data

> From data generation point of view, the model first samples a latent variable z, and it
then samples data vector x given a value for latent z

Probabilistic factor analysis
» Probabilistic factor analysis model can be described as the following generative model

p(z) = N(z | 0.1)
p(x | 2) = N(x | Wz + 1, W),

where z € Rl is a low-dimensional latent variable and x € RP denotes observed data

> From data generation point of view, the model first samples a latent variable z, and it
then samples data vector x given a value for latent z

> We can marginalize out the latent variable z from p(x,z) = p(x | z)p(z) to get

p(x) = [pix| 2)pla)dz

:/N(X|Wz+u,l|l)/\/(z|0,l)dz

= N(x | p, WWT + W)

Probabilistic factor analysis illustration

p(z)

Figure 20.9: Illustration of the FA generative process, where we have L = 1 latent dimension generating
D = 2 observed dimensions; we assume W = o*I. The latent factor has value z € R, sampled from
p(2); this gets mapped to a 2d offset § = zw, where w € R?, which gets added to p to define a Gaussian
p(x|2) = N(x|p + 8,0°1). By integrating over z, we “slide” this circular Gaussian “spray can” along the
principal component azxis w, which induces elliptical Gaussian contours in x space centered on . Adapted
from Figure 12.9 of [/.

Figure from (Murphy, 2020)

Probabilistic principle component analysis

» A special case of the FA model where columns of W are orthonormal, W = 2l and n=>0
is called probabilistic principle component analysis (PPCA)

p(x) = /./\/(x | Wz, 02N (z | 0,1)dz = N'(x | 0, WWT 4 52I)

Probabilistic principle component analysis

» A special case of the FA model where columns of W are orthonormal, W = 2l and n=>0
is called probabilistic principle component analysis (PPCA)

p(x) = /./\/(x | Wz, 02N (z | 0,1)dz = N'(x | 0, WWT 4 52I)

» Given an observed data set D = (x1,...,X,) we can estimate the model parameters W
and o2

> Compute the sample covariance matrix S = 1 37 | (x; — x)(x; — x)7

\4

Rewrite S using the eigenvector-eigenvalue decomposition S = UAUT
> Optimal parameters are W = U, (A, — 0®I)? (upto arbitrary rotation) and

2 _ 1 D .
0% =5 Ditia1 A

Probabilistic principle component analysis: posterior

> Given W and o2, we can use the PPCA and reduce the dimension of observed data x

» The embedding of x can be shown to have normal distribution
p(z|x)=N(z| MW (x — pn),0’M™1),

where M = WTW + ¢2I
» In the noise-free case of 02 = 0 the PPCA and PCA are directly comparable

Variational autoencoder

» The PPCA model is still a linear latent variable model

» We can extend the PPCA by defining the generative model to be nonlinear
p(z) =N(z|0,1)
p(x | z) = N(x| f(z;0), %),

where f(+;6) is a nonlinear function which is typically parameterized by a deep neural
network, such as the MLP

» For nonlinear models we can compute neither the marginal likelihood p(x) nor the
posterior of the latent representation p(z | x) analytically

Variational autoencoder

» The PPCA model is still a linear latent variable model
» We can extend the PPCA by defining the generative model to be nonlinear

p(z) = N(z|0,1)
p(x | z) = N(x| f(z;0), %),
where f(+;6) is a nonlinear function which is typically parameterized by a deep neural
network, such as the MLP

» For nonlinear models we can compute neither the marginal likelihood p(x) nor the
posterior of the latent representation p(z | x) analytically

» Another key idea of the variational autoencoder (VAE) model is to use so-called inference
network g(z | x, ¢) to approximate the intractable true posterior p(z | x)

» If we assume that the variationally approximated posterior has normal distribution, then

q(z | X>¢) = N(Z | fu(x7¢)v fgz(x, ¢))7

where f,(-, ¢) and f,2(-, ¢) are parametrized by deep neural network(s)

Variational autoencoder illustration

Prior distribution: pe(z)

z-space

Encoder: qq(z/x)

Decoder: pe(x|z)

A

X-space

Dataset: D

Figure from (Kingma and Welling, 2019)

Variational autoencoder: training

» It can be shown that maximizing the marginal likelihood of the data
p(x) = [p(x | z)p(z)dz corresponds to minimizing the Kullback-Leibler divergence from

q(z [x,¢) to p(z | x)

q(z | x,9) dz

KL(a(z | x.0)p(z |) = [a(z % 0)log L7

» This leads to so called evidence lower bound objective

ELBO = Eqzx,4) log p(x | z,0) — KL(q(z | x, 9)|p(2)),

reconstruction term regularization term

which can be maximized using a reparametrization trick and stochastic gradient methods

Contents

» Neural networks: basics
» Cell type identification
» Variational autoencoder

» Single-cell variational autoencoder

Deep generative models for single cell data
» scRNA-seq profiles contain both biological (mostly unknown) and technical (still poorly
characterized) uncertainties

» Challenging to specify a well-motivated probabilistic model for the data

» VAE provides one principled modeling framework for complex scRNA-seq data

A variational autoencoder for scRNA-seq data

» Variational autoencoder architecture with deep neural networks

Variational posterior Generative model
(2, uln, 1) P(@nlzn, S, fn)
NN1 —
oY Size Factor
— mean
Y
NN2
O Zn1)) Imputation
O — std
NNS

Differential
Expression

— Expected
NN3 — @21 frequency
Latent space
' Fulzn, $n)

o)

O Tne — mean
’ ~— NN6
NN4 . Zn,d
—
@ s
| —| std .
Sn
— Tn(zn, 8n)
! .
Raw expression Non-linear Variational Non-linear g?;'s;";Ye
data + Batch ID mapping distribution Sampling mapping istribution
parameters

|
| Clustering
—)) Visualization
Batch Removal

Figure from (Lopez et al, 2019)

A variational autoencoder for scRNA-seq data

» A probabilistic model for scRNA-seq data

~ Normal(0, I) \
/_\
~ LogNormal(/,,, ¢2) CZIE) o)
= fuw(zn, sn) \\ﬂ, n 2;;;)
~ Gamma(p?,0) - \T
~ Poisson (¢, wng) (4ms) i@@
~ Bernoulli(f7 (zn, sn)))\<
g
— Yng if hng = O’ Genes - G
0 otherwise. Cells N

Figure from (Lopez et al, 2019)

A variational autoencoder for scRNA-seq data illustration

o astocytes ependymal o olgodendrocytes
el mural « pyramical cAL

PCA

SIMLR

CORTEX HEMATO zIN8
Figure from (Lopez et al, 2019)

References

Kingma DP, Welling M, An Introduction to Variational Autoencoders, Foundations and Trends in Machine Learning, 2019

R. Lopez, J. Regier, MB. Cole, M. Jordan, N. Yosef, Deep Generative Modeling for Single-cell Transcriptomics, Nature Methods, 2019
Ma F, Pellegrini M, ACTINN: automated identification of cell types in single cell RNA sequencing, Bioinformatics, 36(2):533-538, 2019
Murphy K, Machine learning: a probabilistic perspective, MIT Press, 2012

Murphy K, Probabilistic machine learning: an introduction, MIT Press, 2019

vVVYyVYVYYVYY

Shao X, et al., scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network, Nucleic
Acids Research, https://doi.org/10.1093/nar/gkab775 , 2021

	Outline
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background

