
1/ 32

CS-E5875 High-Throughput Bioinformatics
Machine learning for scRNA-seq analysis

Harri Lähdesmäki

Department of Computer Science
Aalto University

December 1, 2023

2/ 32

Contents

▶ Neural networks: basics

▶ Cell type identification

▶ Variational autoencoder

▶ Single-cell variational autoencoder

3/ 32

Generalized linear model for binary-valued data

▶ Recall again the generalized linear modeling (GLM) framework

▶ Consider data D = {(x1, y1), . . . , (xn, yn)), where xi = (xi1, . . . , xik)
T denotes the

explanatory variables and the response variable yi can have only two possible value: {0, 1}
▶ Binary data can be modeled using the Bernoulli probability density function:

Ber(y | p) = py (1− p)1−y ,

where p is the probability of success, or the mean (parameter) as E(Y) = p

▶ In GLM framework we want to model p using a linear model via a link function

▶ For binary data the following link function is useful

log

(
pi

1− pi

)
= xTi β + β0 ⇐⇒ pi =

1

1 + exp(−(xTi β + β0))
= sigm(xTi β + β0),

where sigm : R → [0, 1] is the sigmoidal function that maps the real line to the interval
between 0 and 1

▶ Therefore, our model is Ber(yi | sigm(xTi β + β0))

3/ 32

Generalized linear model for binary-valued data

▶ Recall again the generalized linear modeling (GLM) framework

▶ Consider data D = {(x1, y1), . . . , (xn, yn)), where xi = (xi1, . . . , xik)
T denotes the

explanatory variables and the response variable yi can have only two possible value: {0, 1}
▶ Binary data can be modeled using the Bernoulli probability density function:

Ber(y | p) = py (1− p)1−y ,

where p is the probability of success, or the mean (parameter) as E(Y) = p

▶ In GLM framework we want to model p using a linear model via a link function

▶ For binary data the following link function is useful

log

(
pi

1− pi

)
= xTi β + β0 ⇐⇒ pi =

1

1 + exp(−(xTi β + β0))
= sigm(xTi β + β0),

where sigm : R → [0, 1] is the sigmoidal function that maps the real line to the interval
between 0 and 1

▶ Therefore, our model is Ber(yi | sigm(xTi β + β0))

4/ 32

Logistic regression

▶ Machine learning terminology:
▶ The sigmoidal function is called the activation function and denoted here as ϕ(·)
▶ The GLM model for binary data is called the logistic regression model or linear classifier and

is denoted as y = f (x) = ϕ(xTβ + β0) = ϕ(βTx+ β0)

▶ Illustrations of the sigmoidal activation function (left) and linear classifiers for two
covariates (right)

8.4. Bayesian logistic regression 259

460 480 500 520 540 560 580 600 620 640

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sigmoid

probit

(b)

Figure 8.7 (a) Posterior predictive density for SAT data. The red circle denotes the posterior mean, the
blue cross the posterior median, and the blue lines denote the 5th and 95th percentiles of the predictive
distribution. Figure generated by logregSATdemoBayes. (b) The logistic (sigmoid) function sigm(x) in
solid red, with the rescaled probit function Φ(λx) in dotted blue superimposed. Here λ =

√
π/8, which

was chosen so that the derivatives of the two curves match at x = 0. Based on Figure 4.9 of (Bishop
2006b). Figure generated by probitPlot. Figure generated by probitRegDemo.

shows the average of these samples. By averaging over multiple predictions, we see that the
uncertainty in the decision boundary “splays out” as we move further from the training data.
So although the decision boundary is linear, the posterior predictive density is not linear. Note
also that the posterior mean decision boundary is roughly equally far from both classes; this is
the Bayesian analog of the large margin principle discussed in Section 14.5.2.2.

Figure 8.7(a) shows an example in 1d. The red dots denote the mean of the posterior predictive
evaluated at the training data. The vertical blue lines denote 95% credible intervals for the
posterior predictive; the small blue star is the median. We see that, with the Bayesian approach,
we are able to model our uncertainty about the probability a student will pass the exam based
on his SAT score, rather than just getting a point estimate.

8.4.4.2 Probit approximation (moderated output) *

If we have a Gaussian approximation to the posterior p(w|D) ≈ N (w|mN ,VN), we can also
compute a deterministic approximation to the posterior predictive distribution, at least in the
binary case. We proceed as follows:

p(y = 1|x, D) ≈
∫

sigm(wT x)p(w|D)dw =

∫
sigm(a)N (a|µa, σ2

a)da (8.62)

a ! wT x (8.63)

µa ! E [a] = mT
Nx (8.64)

σ2
a ! var [a] =

∫
p(a|D)[a2 − E

[
a2
]
]da (8.65)

=

∫
p(w|D)[(wT x)2 − (mT

Nx)2]dw = xT VNx (8.66)

246 Chapter 8. Logistic regression

−3 −2 −1 0 1 2 3 4 5 6

−3
−2
−1

0
1
2
3
4
5

−10
0

10 −10
0

100
0.5

1

x2

W = (−2 , −1)

x1

−10
0

10 −10
0

100
0.5

1

x2

W = (−2 , 3)

x1

−10
0

10 −10
0

100
0.5

1

x2

W = (0 , 2)

x1

−10
0

10 −10
0

100
0.5

1

x2

W = (1 , 4)

x1

−10
0

10 −10
0

100
0.5

1

x2

W = (1 , 0)

x1

−10
0

10 −10
0

100
0.5

1

x2

W = (2 , 2)

x1

−10
0

10 −10
0

100
0.5

1

x2

W = (2 , −2)

x1

−10
0

10 −10
0

100
0.5

1

x2

W = (3 , 0)

x1

−10
0

10 −10
0

100
0.5

1

x2

W = (5 , 4)

x1

−10
0

10 −10
0

100
0.5

1

x2

W = (5 , 1)

x1

w1

w2

Figure 8.1 Plots of sigm(w1x1 + w2x2). Here w = (w1, w2) defines the normal to the decision
boundary. Points to the right of this have sigm(wT x) > 0.5, and points to the left have sigm(wT x) <
0.5. Based on Figure 39.3 of (MacKay 2003). Figure generated by sigmoidplot2D.

8.3.1 MLE

The negative log-likelihood for logistic regression is given by

NLL(w) = −
N∑

i=1

log[µ
I(yi=1)
i × (1− µi)

I(yi=0)] (8.2)

= −
N∑

i=1

[yi log µi + (1− yi) log(1− µi)] (8.3)

This is also called the cross-entropy error function (see Section 2.8.2).
Another way of writing this is as follows. Suppose ỹi ∈ {−1, +1} instead of yi ∈ {0, 1}. We

have p(y = 1) = 1
1+exp(−wT x)

and p(y = 1) = 1
1+exp(+wT x)

. Hence

NLL(w) =
N∑

i=1

log(1 + exp(−ỹiw
T xi)) (8.4)

Unlike linear regression, we can no longer write down the MLE in closed form. Instead, we
need to use an optimization algorithm to compute it. For this, we need to derive the gradient
and Hessian.

In the case of logistic regression, one can show (Exercise 8.3) that the gradient and Hessian

Figures from (Murphy, 2012)

5/ 32

Neural networks: Perceptron

▶ Some machine learning / neural network models are inspired by neuroscience and can be
seen as models which try to mimic information processing in brain

▶ The first neural network model by Rosenblatt was called perceptron

▶ Perceptron is essentially the logistic regression model where the activation function is the
step function

y = f (x) = sign(βTx+ β0),

where sign(x) = 0 if x < 0, and sign(x) = 1 if x ≥ 0

▶ Term perceptron is nowadays used to denote the logistic regression model with an
activation function that is typically something else than the step function

▶ Linear classifier and perceptron are limited in that they can only solve linear classification
problems (where two classes are linearly separable)

6/ 32

Multilayer perceptron

▶ Multilayer perceptron (MLP) is the most
basic type of deep neural network model

▶ MLP combines several linear classifiers
(perceptrons) such that outputs of the
perceptrons in the previous layer are used
as the inputs to the linear classifier in the
next layer

▶ Each node in the network implements the
function

y = f (x) = ϕ(wTx+ b),

where w and b are the linear model
weights that are different for each node

474 Chapter 13. Neural networks for unstructured data

(a) (b)

Figure 13.22: Illustration of dropout. (a) A standard neural net with 2 hidden layers. (b) An example of a
thinned net produced by applying dropout with p0 = 0.5. Units that have been dropped out are marked with an
x. From Figure 1 of [Sri+14]. Used with kind permission of Geoff Hinton.

Dropout can dramatically reduce overfitting and is very widely used. Intuitively, the reason dropout
works well is that it prevents complex co-adaptation of the hidden units. In other words, each unit
must learn to perform well even if some of the other units are missing at random. This prevents the
units from learning complex, but fragile, dependencies on each other.5 A more formal explanation,
in terms of Gaussian scale mixture priors, can be found in [NHLS19].

We can view dropout as estimating a noisy version of the weights, ✓lij = wlij✏li, where ✏li ⇠
Ber(1� p) is a Bernoulli noise term. (So if we sample ✏li = 0, then all of the weights going out of
unit i in layer l � 1 into any j in layer l will be set to 0.) At test time, we usually turn th enoise off;
this is equivalent to setting ✏li = 1. To derive the corresponding estimate for the non-noisy weights,
we should use wlij = ✓lij/E [✏li], so the weights have the same expectation at test time as they did
during training. For Bernoulli noise, we have E [✏] = 1 � p, so we should divide by 1 � p before
making predictions.

We can, however, use dropout at test time if we wish. The result is an ensemble of networks,
each with slightly different sparse graph structures. This is called Monte Carlo dropout [GG16;
KG17], and has the form

p(y|x, D) ⇡ 1

S

SX

s=1

p(y|x,Ŵ✏s + b̂) (13.112)

where S is the number of samples, and we write Ŵ✏s to indicate that we are multiplying all
the estimated weight matrices by a sampled noise vector. This can sometimes provide a good
approximation to the Bayesian posterior predictive distribution p(y|x, D), especially if the noise rate
is optimized [GHK17].

5. Geoff Hinton, who invented dropout, said he was inspired by a talk on sexual reproduction, which encourages genes
to be individually useful (or at most depend on a small number of other genes), even when combined with random
other genes.

Draft of “Probabilistic Machine Learning: An Introduction”. April 21, 2021

Figure from (Murphy, 2020)

7/ 32

Multilayer perceptron

▶ The nodes at the bottom correspond to
the input x

▶ h1 denotes the outputs of the perceptrons
in the first layer (W1 = (w11, . . . ,w1m))

h1 = (ϕ(wT
11x+ b11), . . . , ϕ(w

T
1mx+ b1m))

T

= ϕ(WT
1 x+ b1),

▶ h2 denotes the outputs of the perceptrons
in the 2nd layer (W2 = (w21, . . . ,w2m))

h2 = (ϕ(wT
21h1 + b21), . . . , ϕ(w

T
2mh1 + b2m))

T

= ϕ(WT
2 h1 + b2)

▶ Output is y = ψ(wT
3 h2 + b3)

y

h2

h1

x

474 Chapter 13. Neural networks for unstructured data

(a) (b)

Figure 13.22: Illustration of dropout. (a) A standard neural net with 2 hidden layers. (b) An example of a
thinned net produced by applying dropout with p0 = 0.5. Units that have been dropped out are marked with an
x. From Figure 1 of [Sri+14]. Used with kind permission of Geoff Hinton.

Dropout can dramatically reduce overfitting and is very widely used. Intuitively, the reason dropout
works well is that it prevents complex co-adaptation of the hidden units. In other words, each unit
must learn to perform well even if some of the other units are missing at random. This prevents the
units from learning complex, but fragile, dependencies on each other.5 A more formal explanation,
in terms of Gaussian scale mixture priors, can be found in [NHLS19].

We can view dropout as estimating a noisy version of the weights, ✓lij = wlij✏li, where ✏li ⇠
Ber(1� p) is a Bernoulli noise term. (So if we sample ✏li = 0, then all of the weights going out of
unit i in layer l � 1 into any j in layer l will be set to 0.) At test time, we usually turn th enoise off;
this is equivalent to setting ✏li = 1. To derive the corresponding estimate for the non-noisy weights,
we should use wlij = ✓lij/E [✏li], so the weights have the same expectation at test time as they did
during training. For Bernoulli noise, we have E [✏] = 1 � p, so we should divide by 1 � p before
making predictions.

We can, however, use dropout at test time if we wish. The result is an ensemble of networks,
each with slightly different sparse graph structures. This is called Monte Carlo dropout [GG16;
KG17], and has the form

p(y|x, D) ⇡ 1

S

SX

s=1

p(y|x,Ŵ✏s + b̂) (13.112)

where S is the number of samples, and we write Ŵ✏s to indicate that we are multiplying all
the estimated weight matrices by a sampled noise vector. This can sometimes provide a good
approximation to the Bayesian posterior predictive distribution p(y|x, D), especially if the noise rate
is optimized [GHK17].

5. Geoff Hinton, who invented dropout, said he was inspired by a talk on sexual reproduction, which encourages genes
to be individually useful (or at most depend on a small number of other genes), even when combined with random
other genes.

Draft of “Probabilistic Machine Learning: An Introduction”. April 21, 2021

Figure from (Murphy, 2020)

8/ 32

Multilayer perceptron

▶ The MLP model can be written more
compactly as

y = f3(f2(f1(x;θ1);θ2);θ3),

where f1(·;θ1), f2(·;θ2) and f3(·;θ3) are
the perceptrons from the previous page
(that have outputs h1, h2, y) and
θi = (Wi ,bi), θi = (Wi ,bi), and
θ3 = (w3, b3)

▶ Alternatively write

y = f (x;θ),

where θ = (θ1,θ2,θ3)

y

h2

h1

x

474 Chapter 13. Neural networks for unstructured data

(a) (b)

Figure 13.22: Illustration of dropout. (a) A standard neural net with 2 hidden layers. (b) An example of a
thinned net produced by applying dropout with p0 = 0.5. Units that have been dropped out are marked with an
x. From Figure 1 of [Sri+14]. Used with kind permission of Geoff Hinton.

Dropout can dramatically reduce overfitting and is very widely used. Intuitively, the reason dropout
works well is that it prevents complex co-adaptation of the hidden units. In other words, each unit
must learn to perform well even if some of the other units are missing at random. This prevents the
units from learning complex, but fragile, dependencies on each other.5 A more formal explanation,
in terms of Gaussian scale mixture priors, can be found in [NHLS19].

We can view dropout as estimating a noisy version of the weights, ✓lij = wlij✏li, where ✏li ⇠
Ber(1� p) is a Bernoulli noise term. (So if we sample ✏li = 0, then all of the weights going out of
unit i in layer l � 1 into any j in layer l will be set to 0.) At test time, we usually turn th enoise off;
this is equivalent to setting ✏li = 1. To derive the corresponding estimate for the non-noisy weights,
we should use wlij = ✓lij/E [✏li], so the weights have the same expectation at test time as they did
during training. For Bernoulli noise, we have E [✏] = 1 � p, so we should divide by 1 � p before
making predictions.

We can, however, use dropout at test time if we wish. The result is an ensemble of networks,
each with slightly different sparse graph structures. This is called Monte Carlo dropout [GG16;
KG17], and has the form

p(y|x, D) ⇡ 1

S

SX

s=1

p(y|x,Ŵ✏s + b̂) (13.112)

where S is the number of samples, and we write Ŵ✏s to indicate that we are multiplying all
the estimated weight matrices by a sampled noise vector. This can sometimes provide a good
approximation to the Bayesian posterior predictive distribution p(y|x, D), especially if the noise rate
is optimized [GHK17].

5. Geoff Hinton, who invented dropout, said he was inspired by a talk on sexual reproduction, which encourages genes
to be individually useful (or at most depend on a small number of other genes), even when combined with random
other genes.

Draft of “Probabilistic Machine Learning: An Introduction”. April 21, 2021

Figure from (Murphy, 2020)

9/ 32

Multilayer perceptron:

▶ Although our example MLP has two
hidden layers, in general MLPs can have
any number of layers

▶ Each layer can have an arbitrary number
of nodes (=width)

▶ MLPs can use different types of activation
functions

y

h2

h1

x

474 Chapter 13. Neural networks for unstructured data

(a) (b)

Figure 13.22: Illustration of dropout. (a) A standard neural net with 2 hidden layers. (b) An example of a
thinned net produced by applying dropout with p0 = 0.5. Units that have been dropped out are marked with an
x. From Figure 1 of [Sri+14]. Used with kind permission of Geoff Hinton.

Dropout can dramatically reduce overfitting and is very widely used. Intuitively, the reason dropout
works well is that it prevents complex co-adaptation of the hidden units. In other words, each unit
must learn to perform well even if some of the other units are missing at random. This prevents the
units from learning complex, but fragile, dependencies on each other.5 A more formal explanation,
in terms of Gaussian scale mixture priors, can be found in [NHLS19].

We can view dropout as estimating a noisy version of the weights, ✓lij = wlij✏li, where ✏li ⇠
Ber(1� p) is a Bernoulli noise term. (So if we sample ✏li = 0, then all of the weights going out of
unit i in layer l � 1 into any j in layer l will be set to 0.) At test time, we usually turn th enoise off;
this is equivalent to setting ✏li = 1. To derive the corresponding estimate for the non-noisy weights,
we should use wlij = ✓lij/E [✏li], so the weights have the same expectation at test time as they did
during training. For Bernoulli noise, we have E [✏] = 1 � p, so we should divide by 1 � p before
making predictions.

We can, however, use dropout at test time if we wish. The result is an ensemble of networks,
each with slightly different sparse graph structures. This is called Monte Carlo dropout [GG16;
KG17], and has the form

p(y|x, D) ⇡ 1

S

SX

s=1

p(y|x,Ŵ✏s + b̂) (13.112)

where S is the number of samples, and we write Ŵ✏s to indicate that we are multiplying all
the estimated weight matrices by a sampled noise vector. This can sometimes provide a good
approximation to the Bayesian posterior predictive distribution p(y|x, D), especially if the noise rate
is optimized [GHK17].

5. Geoff Hinton, who invented dropout, said he was inspired by a talk on sexual reproduction, which encourages genes
to be individually useful (or at most depend on a small number of other genes), even when combined with random
other genes.

Draft of “Probabilistic Machine Learning: An Introduction”. April 21, 2021

Figure from (Murphy, 2020)

10/ 32

Multilayer perceptron: likelihood and inference

▶ Binary classification: choose the activation function for the last layer to be e.g. the
sigmoidal function ψ(·) = sigm(·) and use the Bernoulli likelihood for the data D

L(θ) = p(D | θ) =
n∏

i=1

Ber(yi | f (xi ;θ))

▶ Regression assuming additive Gaussian noise: the activation function for the last layer can
be the identity function and use the Gaussian likelihood

L(θ) = p(D | θ) =
n∏

i=1

N (yi | f (xi ;θ), σ2)

▶ The large number of parameters of the model can be chosen by maximizing the likelihood

▶ No closed form solution but the parameters can be optimized iteratively using numerical
optimization methods

θ(s+1) := θ(s) +∆
∂ logL
∂θ

∣∣∣∣
θ(s)

10/ 32

Multilayer perceptron: likelihood and inference

▶ Binary classification: choose the activation function for the last layer to be e.g. the
sigmoidal function ψ(·) = sigm(·) and use the Bernoulli likelihood for the data D

L(θ) = p(D | θ) =
n∏

i=1

Ber(yi | f (xi ;θ))

▶ Regression assuming additive Gaussian noise: the activation function for the last layer can
be the identity function and use the Gaussian likelihood

L(θ) = p(D | θ) =
n∏

i=1

N (yi | f (xi ;θ), σ2)

▶ The large number of parameters of the model can be chosen by maximizing the likelihood

▶ No closed form solution but the parameters can be optimized iteratively using numerical
optimization methods

θ(s+1) := θ(s) +∆
∂ logL
∂θ

∣∣∣∣
θ(s)

10/ 32

Multilayer perceptron: likelihood and inference

▶ Binary classification: choose the activation function for the last layer to be e.g. the
sigmoidal function ψ(·) = sigm(·) and use the Bernoulli likelihood for the data D

L(θ) = p(D | θ) =
n∏

i=1

Ber(yi | f (xi ;θ))

▶ Regression assuming additive Gaussian noise: the activation function for the last layer can
be the identity function and use the Gaussian likelihood

L(θ) = p(D | θ) =
n∏

i=1

N (yi | f (xi ;θ), σ2)

▶ The large number of parameters of the model can be chosen by maximizing the likelihood

▶ No closed form solution but the parameters can be optimized iteratively using numerical
optimization methods

θ(s+1) := θ(s) +∆
∂ logL
∂θ

∣∣∣∣
θ(s)

11/ 32

Multilayer perceptron: illustration

▶ Deep MLP can learn complex functions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Dynamics Learning with Ensembles

Dataset of state-action trajectories D = {(s(n)
0:T , a(n)

0:T)}N
n=1

Neural ODE f̂θ [Chen et al., 2018] ŝ(t) = s0 +

∫ t

0
f̂θ(s(τ))dτ

Variational inference q(θ) log p(D) ≥ Eq
[
log p(D|θ)

]
− kl

[
q(θ) || p(θ)

]

Çağatay Yıldız, Markus Heinonen, Harri Lähdesmäki (Aalto Uni.) Continuous-time Model-based Reinforcement Learning June 21, 2021 8 / 14

Figure by Cagatay Yildiz

12/ 32

Contents

▶ Neural networks: basics

▶ Cell type identification

▶ Variational autoencoder

▶ Single-cell variational autoencoder

13/ 32

Cell type identification with neural networks

▶ Computational cell type identification is an important step in scRNA-seq analysis

▶ Several cell type annotation methods rely on unsupervised clustering

▶ We we will look at a supervised cell type annotation method that uses deep learning
method which is trained on a data set of labelled single cells

14/ 32

Automated cell type identification using neural networks (ACTINN)

▶ ACTINN (Ma and Pellegrini, 2019) is one of the many recently proposed supervised
methods for cell type identification that use deep learning methods

▶ Labelled single-cell gene expression profiles D = ((x1, y1), . . . , (xn, yn)) are collected from
different databases

▶ The number of cell types is denoted by k, yi ∈ {1, . . . , k}
▶ The method uses only those genes that appear in all the databases

▶ Genes with the highest 1% and lowest 1% mean expression are ignored

▶ Genes with the highest 1% and lowest 1% standard deviation are ignored

▶ The normalized gene expression vector xi ∈ Rd for d genes in cell i is obtained as

xi = log2
104 · (x̃i + 1)

Ni
,

where x̃i denotes the raw gene expression counts for all d genes and Ni is the total gene
expression (count) measured for cell i

15/ 32

Automated cell type identification using neural networks (ACTINN)

▶ ACTINN uses the MLP with three hidden layers that have widths 100, 50 and 25

y = f4(f3(f2(f1(x;θ1);θ2);θ3);θ4)

with Relu activation function Relu(h) = max(0, h) for the hidden layers and the softmax
activation (or link function) for f4

softmax(h) =

(
exp(h(1))

∑k
j=1 exp(h(j))

, · · · , exp(h(k))
∑k

j=1 exp(h(j))

)

that maps the neural network outputs to k probabilities that sum up to one and thus
allows modeling k cell types

▶ The model is trained using the multi-class extension of the Bernoulli likelihood (i.e.,
likelihood for categorical random variable) based loss function

16/ 32

Automated cell type identification using neural networks (ACTINN)

Figure from (Ma and Pellegrini, 2019)

17/ 32

Comparison of cell type Identification methods

Figure from (Shao et al., 2021)

18/ 32

Contents

▶ Neural networks: basics

▶ Cell type identification

▶ Variational autoencoder

▶ Single-cell variational autoencoder

19/ 32

Dimension reduction

▶ In the previous lecture we discussed about PCA and how it can be used for dimension
reduction and to analyze high-dimensional scRNA-seq data

▶ In this lecture we will look at some more advanced dimension reduction methods that can
be presented as generative models

20/ 32

Probabilistic factor analysis

▶ Probabilistic factor analysis model can be described as the following generative model

p(z) = N (z | 0, I)
p(x | z) = N (x | Wz+ µ,Ψ),

where z ∈ RL is a low-dimensional latent variable and x ∈ RD denotes observed data

▶ From data generation point of view, the model first samples a latent variable z, and it
then samples data vector x given a value for latent z

▶ We can marginalize out the latent variable z from p(x, z) = p(x | z)p(z) to get

p(x) =

∫
p(x | z)p(z)dz

=

∫
N (x | Wz+ µ,Ψ)N (z | 0, I)dz

= N (x | µ,WWT +Ψ)

20/ 32

Probabilistic factor analysis

▶ Probabilistic factor analysis model can be described as the following generative model

p(z) = N (z | 0, I)
p(x | z) = N (x | Wz+ µ,Ψ),

where z ∈ RL is a low-dimensional latent variable and x ∈ RD denotes observed data

▶ From data generation point of view, the model first samples a latent variable z, and it
then samples data vector x given a value for latent z

▶ We can marginalize out the latent variable z from p(x, z) = p(x | z)p(z) to get

p(x) =

∫
p(x | z)p(z)dz

=

∫
N (x | Wz+ µ,Ψ)N (z | 0, I)dz

= N (x | µ,WWT +Ψ)

21/ 32

Probabilistic factor analysis illustration
686 Chapter 20. Dimensionality reduction

Z

[� [�

[� [�

]

S�]� S�[�

ȝ

S�]�
]�_Z_

S�[_]�

ȝ

�

Figure 20.9: Illustration of the FA generative process, where we have L = 1 latent dimension generating
D = 2 observed dimensions; we assume = �2I. The latent factor has value z 2 R, sampled from
p(z); this gets mapped to a 2d offset � = zw, where w 2 R2, which gets added to µ to define a Gaussian
p(x|z) = N (x|µ + �, �2I). By integrating over z, we “slide” this circular Gaussian “spray can” along the
principal component axis w, which induces elliptical Gaussian contours in x space centered on µ. Adapted
from Figure 12.9 of [Bis06].

20.2.2 Probabilistic PCA

In this section, we consider a special case of the factor analysis model in which W has orthonormal
columns, = �2I and µ = 0. This model is called probabilistic principal components analysis
(PPCA) [TB99], or sensible PCA [Row97]. The marginal distribution on the visible variables has
the form

p(x|✓) =

Z
N (x|Wz, �2I)N (z|0, I)dz = N (x|µ,C) (20.41)

where

C = WW> + �2I (20.42)

The log likelihood for PPCA is given by

log p(X|µ,W, �2) = �ND

2
log(2⇡)� N

2
log |C| � 1

2

NX

n=1

(xn � µ)>C�1(xn � µ) (20.43)

The MLE for µ is x. Plugging in gives

log p(X|µ,W, �2) = �N

2

⇥
D log(2⇡) + log |C| + tr(C�1S)

⇤
(20.44)

where S = 1
N

PN
n=1(xn � x)(xn � x)> is the empirical covariance matrix.

In [TB99; Row97] they show that the maximum of this objective must satisfy

W = UL(LL � �2I)
1
2 R (20.45)

Draft of “Probabilistic Machine Learning: An Introduction”. April 21, 2021

Figure from (Murphy, 2020)

22/ 32

Probabilistic principle component analysis

▶ A special case of the FA model where columns of W are orthonormal, Ψ = σ2I and µ = 0
is called probabilistic principle component analysis (PPCA)

p(x) =

∫
N (x | Wz, σ2I)N (z | 0, I)dz = N (x | 0,WWT + σ2I)

▶ Given an observed data set D = (x1, . . . , xn) we can estimate the model parameters W
and σ2

▶ Compute the sample covariance matrix S = 1
n

∑n
i=1(xi − x̄)(xi − x̄)T

▶ Rewrite S using the eigenvector-eigenvalue decomposition S = UΛUT

▶ Optimal parameters are W = UL(ΛL − σ2I)
1
2 (upto arbitrary rotation) and

σ2 = 1
D−L

∑D
i=L+1 λi

22/ 32

Probabilistic principle component analysis

▶ A special case of the FA model where columns of W are orthonormal, Ψ = σ2I and µ = 0
is called probabilistic principle component analysis (PPCA)

p(x) =

∫
N (x | Wz, σ2I)N (z | 0, I)dz = N (x | 0,WWT + σ2I)

▶ Given an observed data set D = (x1, . . . , xn) we can estimate the model parameters W
and σ2

▶ Compute the sample covariance matrix S = 1
n

∑n
i=1(xi − x̄)(xi − x̄)T

▶ Rewrite S using the eigenvector-eigenvalue decomposition S = UΛUT

▶ Optimal parameters are W = UL(ΛL − σ2I)
1
2 (upto arbitrary rotation) and

σ2 = 1
D−L

∑D
i=L+1 λi

23/ 32

Probabilistic principle component analysis: posterior

▶ Given W and σ2, we can use the PPCA and reduce the dimension of observed data x

▶ The embedding of x can be shown to have normal distribution

p(z | x) = N (z | M−1WT (x− µ), σ2M−1),

where M = WTW + σ2I

▶ In the noise-free case of σ2 = 0 the PPCA and PCA are directly comparable

24/ 32

Variational autoencoder

▶ The PPCA model is still a linear latent variable model

▶ We can extend the PPCA by defining the generative model to be nonlinear

p(z) = N (z | 0, I)
p(x | z) = N (x | f (z; θ), σ2I),

where f (·; θ) is a nonlinear function which is typically parameterized by a deep neural
network, such as the MLP

▶ For nonlinear models we can compute neither the marginal likelihood p(x) nor the
posterior of the latent representation p(z | x) analytically

▶ Another key idea of the variational autoencoder (VAE) model is to use so-called inference
network q(z | x, ϕ) to approximate the intractable true posterior p(z | x)

▶ If we assume that the variationally approximated posterior has normal distribution, then

q(z | x, ϕ) = N (z | fµ(x, ϕ), fσ2(x, ϕ)),

where fµ(·, ϕ) and fσ2(·, ϕ) are parametrized by deep neural network(s)

24/ 32

Variational autoencoder

▶ The PPCA model is still a linear latent variable model

▶ We can extend the PPCA by defining the generative model to be nonlinear

p(z) = N (z | 0, I)
p(x | z) = N (x | f (z; θ), σ2I),

where f (·; θ) is a nonlinear function which is typically parameterized by a deep neural
network, such as the MLP

▶ For nonlinear models we can compute neither the marginal likelihood p(x) nor the
posterior of the latent representation p(z | x) analytically

▶ Another key idea of the variational autoencoder (VAE) model is to use so-called inference
network q(z | x, ϕ) to approximate the intractable true posterior p(z | x)

▶ If we assume that the variationally approximated posterior has normal distribution, then

q(z | x, ϕ) = N (z | fµ(x, ϕ), fσ2(x, ϕ)),

where fµ(·, ϕ) and fσ2(·, ϕ) are parametrized by deep neural network(s)

25/ 32

Variational autoencoder illustration
2.2. Evidence Lower Bound (ELBO) 17

x-space

z-space

Encoder: qφ(z|x) Decoder: pθ(x|z)

Prior distribution: pθ(z)

Dataset: D

Figure 2.1: A VAE learns stochastic mappings between an observed x-space, whose
empirical distribution qD(x) is typically complicated, and a latent z-space, whose
distribution can be relatively simple (such as spherical, as in this figure). The
generative model learns a joint distribution p◊(x, z) that is often (but not always)
factorized as p◊(x, z) = p◊(z)p◊(x|z), with a prior distribution over latent space
p◊(z), and a stochastic decoder p◊(x|z). The stochastic encoder q„(z|x), also called
inference model, approximates the true but intractable posterior p◊(z|x) of the
generative model.

Figure from (Kingma and Welling, 2019)

26/ 32

Variational autoencoder: training

▶ It can be shown that maximizing the marginal likelihood of the data
p(x) =

∫
p(x | z)p(z)dz corresponds to minimizing the Kullback-Leibler divergence from

q(z | x, ϕ) to p(z | x)

KL(q(z | x, ϕ)||p(z | x)) =
∫

q(z | x, ϕ) log q(z | x, ϕ)
p(z | x) dz

▶ This leads to so called evidence lower bound objective

ELBO = Eq(z|x,ϕ) log p(x | z, θ)
︸ ︷︷ ︸

reconstruction term

−KL(q(z | x, ϕ)||p(z))︸ ︷︷ ︸
regularization term

,

which can be maximized using a reparametrization trick and stochastic gradient methods

27/ 32

Contents

▶ Neural networks: basics

▶ Cell type identification

▶ Variational autoencoder

▶ Single-cell variational autoencoder

28/ 32

Deep generative models for single cell data

▶ scRNA-seq profiles contain both biological (mostly unknown) and technical (still poorly
characterized) uncertainties

▶ Challenging to specify a well-motivated probabilistic model for the data

▶ VAE provides one principled modeling framework for complex scRNA-seq data

29/ 32

A variational autoencoder for scRNA-seq data

▶ Variational autoencoder architecture with deep neural networks

Figure 1: Overview of scVI. Given a gene-expression matrix with batch annotations as input, scVI learns a non-linear embedding
of the cells that can be used for multiple analysis tasks. (a) The underlying graphical model. Shaded vertices represent
observed random variables. Empty vertices represent latent random variables. Shaded diamonds represent constants, set a
priori. Empty diamonds represent global variables shared across all genes and cells. Edges signify conditional dependency.
Rectangles (“plates”) represent independent replication. (b) The computational trees (neural networks) used to compute the
embedding as well as the distribution of gene expression. (c) Comparison of running times (y-axis) on the BRAIN-LARGE
data with a limited set of 720 genes, and with increasing input sizes (x-axis; cells in each input set are sampled randomly from
the complete dataset). scVI is compared against existing methods for dimensionality reduction in the scRNA-seq literature.
As control, we also add basic matrix factorization with factor analysis (FA).

5

.
C

C
-BY-N

C
-N

D
 4.0 International license

It is m
ade available under a

(w
hich w

as not peer-review
ed) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity.

The copyright holder for this preprint
.

http://dx.doi.org/10.1101/292037
doi:

bioR
xiv preprint first posted online M

ar. 30, 2018;
.

C
C

-BY-N
C

-N
D

 4.0 International license
It is m

ade available under a
(w

hich w
as not peer-review

ed) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity.
The copyright holder for this preprint

.
http://dx.doi.org/10.1101/292037

doi:
bioR

xiv preprint first posted online M
ar. 30, 2018;

Figure from (Lopez et al, 2019)

30/ 32

A variational autoencoder for scRNA-seq data

▶ A probabilistic model for scRNA-seq data

observed batch annotation, as well as two additional, unobserved random vari-
ables. The latent random variable `n represents nuisance variation due to vari-
ation in capture efficiency and sequencing depth. It is drawn from a log-normal
distribution and serves as a cell-specific scaling factor.

The latent random variable zn represents the remaining variability, which
should better reflect biological differences between cells. It is drawn from a stan-
dard multivariate normal of low dimensionality d, and provides a latent-space
representation that can be used for visualization and clustering. The reason for
drawing zn from a multivariate normal is essentially for computational conve-
nience (see Methods 4.1). The matrix ⇢ is an intermediate value that relates
the observations xng to the latent variables. It provides a batch-corrected, nor-
malized estimate of the percentage of transcripts in each cell n that originate
from each gene g. We use ⇢ for differential expression analysis, and its scaled
version (multiplying by the estimated library size) for imputation.

Altogether, each expression value xng is drawn independently through the
following process:

zn ⇠ Normal(0, I) (1)

`n ⇠ LogNormal(`µ, `2�) (2)
⇢n = fw(zn, sn) (3)

wng ⇠ Gamma(⇢g
n, ✓) (4)

yng ⇠ Poisson(`nwng) (5)
hng ⇠ Bernoulli(fg

h(zn, sn)) (6)

xng =

(
yng if hng = 0,

0 otherwise.
(7)

Here B denotes the number of batches and `µ, `� 2 RB
+ parameterize the prior

for the scaling factor (on a log scale). The specification of these parameters
is discussed in Methods 4.1. The parameter ✓ 2 RG

+ denotes a gene-specific
inverse dispersion, estimated via variational Bayesian inference (Methods 4.2).
fw and fh are neural networks that map the latent space and batch annotation
back to the full dimension of all genes: Rd ⇥ {0, 1}B ! RG (Figure 1b, NN5-
6). We use superscript annotation (e.g., fg

w(zn, sn)) to refer to a single entry
that corresponds to a specific gene g. We enforce fg

w(zn, sn) to take values in
the probability simplex (namely for each cell n the sum of fg

w(zn, sn) values
over all genes g is one), thus providing interpretation as expected frequencies.
Importantly, neural networks allows us to go beyond the generalized linear model
framework and provide a more flexible model of gene expression. Figure 1a
specifies the complete graphical model and its implementation using neural-
network conditionals. Methods 4.1 provides further details on the specification
of this probabilistic model.

4

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/292037doi: bioRxiv preprint first posted online Mar. 30, 2018;
.CC-BY-NC-ND 4.0 International licenseIt is made available under a

(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
The copyright holder for this preprint. http://dx.doi.org/10.1101/292037doi: bioRxiv preprint first posted online Mar. 30, 2018;

Figure 1: Overview of scVI. Given a gene-expression matrix with batch annotations as input, scVI learns a non-linear embedding
of the cells that can be used for multiple analysis tasks. (a) The underlying graphical model. Shaded vertices represent
observed random variables. Empty vertices represent latent random variables. Shaded diamonds represent constants, set a
priori. Empty diamonds represent global variables shared across all genes and cells. Edges signify conditional dependency.
Rectangles (“plates”) represent independent replication. (b) The computational trees (neural networks) used to compute the
embedding as well as the distribution of gene expression. (c) Comparison of running times (y-axis) on the BRAIN-LARGE
data with a limited set of 720 genes, and with increasing input sizes (x-axis; cells in each input set are sampled randomly from
the complete dataset). scVI is compared against existing methods for dimensionality reduction in the scRNA-seq literature.
As control, we also add basic matrix factorization with factor analysis (FA).

5

.
C

C
-BY-N

C
-N

D
 4.0 International license

It is m
ade available under a

(w
hich w

as not peer-review
ed) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity.

The copyright holder for this preprint
.

http://dx.doi.org/10.1101/292037
doi:

bioR
xiv preprint first posted online M

ar. 30, 2018;
.

C
C

-BY-N
C

-N
D

 4.0 International license
It is m

ade available under a
(w

hich w
as not peer-review

ed) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity.
The copyright holder for this preprint

.
http://dx.doi.org/10.1101/292037

doi:
bioR

xiv preprint first posted online M
ar. 30, 2018;

Figure from (Lopez et al, 2019)

31/ 32

A variational autoencoder for scRNA-seq data illustration

Figure 3: We apply scVI, PCA and SIMLR to three datasets (from right to left: CORTEX, HEMATO and a simulated ‘’noise”
dataset sampled iid from a fixed zero inflated negative binomial (ZINB) distribution). For each dataset, we show a distance
matrix in the latent space as well as a two-dimensional embedding of the cells. Distance matrices: the scales are in relative
units from low to high similarity (over the range of values in the entire matrix). For CORTEX and HEMATO, cells in the
matrices are grouped by their pre- annotated labels, provided by the original studies (for the CORTEX dataset, cell subsets
were ordered by the hierarchical clustering in the original study). For ZINB, the color in the distance matrices is determined
by the clusters called by SIMLR on this data. Embedding plots: each point represents a cell and the layout is determined
either by tSNE (CORTEX, ZINB) or by a 5-nearest neighbors graph visualized using a Fruchterman-Reingold force-directed
algorithm (HEMATO; see Supplementary Figure 15d for the original embedding for SIMLR). For CORTEX and HEMATO,
the color scheme in the embeddings is the same as in the distance matrices. For ZINB, the colors reflect the number of UMI
in each cell (see Supplementary Figure 15a-c for coloring of cells according to SIMLR clusters)

11

.
C

C
-BY-N

C
-N

D
 4.0 International license

It is m
ade available under a

(w
hich w

as not peer-review
ed) is the author/funder, w

ho has granted bioR
xiv a license to display the preprint in perpetuity.

The copyright holder for this preprint
.

http://dx.doi.org/10.1101/292037
doi:

bioR
xiv preprint first posted online M

ar. 30, 2018;
.

C
C

-BY-N
C

-N
D

 4.0 International license
It is m

ade available under a
(w

hich w
as not peer-review

ed) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity.
The copyright holder for this preprint

.
http://dx.doi.org/10.1101/292037

doi:
bioR

xiv preprint first posted online M
ar. 30, 2018;

Figure from (Lopez et al, 2019)

32/ 32

References
▶ Kingma DP, Welling M, An Introduction to Variational Autoencoders, Foundations and Trends in Machine Learning, 2019

▶ R. Lopez, J. Regier, MB. Cole, M. Jordan, N. Yosef, Deep Generative Modeling for Single-cell Transcriptomics, Nature Methods, 2019

▶ Ma F, Pellegrini M, ACTINN: automated identification of cell types in single cell RNA sequencing, Bioinformatics, 36(2):533-538, 2019

▶ Murphy K, Machine learning: a probabilistic perspective, MIT Press, 2012

▶ Murphy K, Probabilistic machine learning: an introduction, MIT Press, 2019

▶ Shao X, et al., scDeepSort: a pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network, Nucleic
Acids Research, https://doi.org/10.1093/nar/gkab775 , 2021

	Outline
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background
	Background

