ELEC-E8116 Model-based control systems
/exercises 10 Solutions

Problem 1:

Consider the multivariable plant

1 11
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a. Use RGA analysis to evaluate how bad the interconnections between the channels
are. Calculate RGA both at zero frequency and the gain crossover frequency.
Choose the preferred pairing and design decentralized PID controllers to control
the system.

Implement the controller in Matlab/Simulink and plot the responses of the outputs
when

a. a unit step enters the reference of channel 1,

b. a unit step enters the reference of channel 2 and

C. unit steps enter at both channels simultaneously.

You may use Matlab in implementing the controller and simulating the closed
loop, or you can use Simulink if you wish.

b. Design a decoupling controller using the singular value decomposition at zero
frequency and choosing the weight matrices W1 and W> accordingly (see Chapter
6 in the lecture slides). Use PID-controllers in the decoupled system. Simulate as
in part a.

Hints: Gain crossover of a MIMO system is calculated based on the largest singular
value. In tuning the PID controllers you may use the tuning functions in Matlab, see e.g.
pidtune.

Solution:
The Matlab code is at the end of the solution. (Note that many of the commands have been
set as comments, %. The idea is that for different experiments only a part of the commands

is made active by removing the %.)

a.
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The RGA at zero frequency is
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RGA(G(s=0)) = 1 2 X 1 o =1 > . By the command sigma we

get the singular values of G(s).
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The gain crossover (larger singular value) is approximately 8.8 rad/s. The RGA as a
function of angular frequency is

RGA=G(jw).*G*(jo)" = 1 to1
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We don’t need to multiply the common terms with each element. Instead, we can do the
following.
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which would give the result above.



Clearly, at the zero angular frequency we get the same result as above. But for ® = 8.8
the result becomes (after some algebra)

RGA 0.0064 + j0.1133 0.9936— j0.1133
- 0.9936— j0.1133 0.0064+ j0.1133

(As for the algebra, for example
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Now it is interesting to note that at the zero angular frequency the preferable pairing
would seem to be u, <> y,, u, <> y,, although neither one is really good. But at the gain

crossover frequency the pairing u, <> y,, u, <>y, should be preferred.

Simulation:
PID (u, <> vy,, U, <> Y,) tuned by Matlab’s pidtune. The solution is unstable. The tuning
values for Fyl were Kp = 1.95, Ki = 2.65, Kd = 0.314, and for Fy2 Kp = 0.973, Ki = 1.32,
Kd = 0.157.

But when they are changed to Fyl Kp =1, Ki=1, Kd =0.314, Fy2 Kp = 0.5, Ki=0.5,
Kd = 0.157 the following result is obtained

Step(1,1) Step(1,0)
< S

[} 305 ® 305 /
38 o 2@ o
£ o3 £ o2
< 5 2 < 52
o (O
© 1 20

0 5 10 0 5 10
Time (seconds) Time (seconds)

Step(0,1) Step(0,0)
o 11— e o1
o 0 05 06 0

R R
28 0 22 1
R ag 1
EC IS
<305 <3 o0
»é 0 »9 -1
0 5 10 0 5 10
Time (seconds) Time (seconds)

PID (u, & V,,u, <> y,) TUNED BY Matlab’s pidtune. The result is unstable. In this

case it turned out to be difficult to re-tune the controller such that a good response would
be obtained.



Conclusion: pidtune is for SISO tuning only. There is no guarantee that it would be
good for MIMO systems. The RGA analysis showed that at zero frequency the coupling
u, <>y, u, <>y, should be preferred. For step responses that seems to be so. At the

gain crossover frequency the pairing u, <> y,, u, <>y, seemed to be preferable, but that
could not be observed by simulations with step reference inputs.

b. There are many ways to solve this. The solution below is based on the below figure,

from which the program code becomes understandable. See also Chapter 6 in the
lecture slides.
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The last part of the figure can be explained by noting that since y =W,y then also
r =W, ‘. The reference signal has to be scaled to get the static gain from r to y to be 1.

The following results are obtained by the below program code. The result is acceptable
but a bit slow. Again, the PID tuning could be improved.
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Problem 2: Consider the following IMC-control configuration, in which the process G is
assumed stable.

a. Prove that to study the internal stability, the stability of the transfer
functions



K(1+GK)™" =Q
(1+GK)*=1-GQ
(1+KG)" =1-QG
G(1+KG)™ =G(1 -QG)
must be investigated. Prove that the system is internally unstable, if either Q or G

is unstable.

b. Let a stable controller K be given. How can you characterize those processes,
which can be stabilized with this controller? (Hint: Change the roles of the
controller and process.)

Solution:

a. For the control it holds

y=Gu+d,

Yo =Yy-Gu

e=r-y,

u=Qe=Qr-Qy, =Qr-Qy+Gu
u=Q[r-(y-Gu)]=Q(r-y)+QGu

from which it follows easily
u=(1-QG)"Q(r-y)
But this has the form
u=K(r-y)
where K=(1-QG)'Q=0Q(I -GQ)*
and
Q=K(l +GK)™

Recall from exercise 5
u=(l+ KG)‘ldu —K(l +GK)‘ldy

y=G(1+KG)™'d, - (1 +GK)™d,



By this controller the configuration is equivalent to the one-degree-of-freedom”-
structure. Based on lectures (Chapter 3, Internal stability of closed-loop systems) it is
known that the system is internally stable, if the transfer functions

K(I +GK)™=Q
(1+GK)*=1-GQ
(1+KG)™*=1-QG

G(l +KG)™ =G(I - QG)

are stable (the “right sides” follow easily from the choice of Q).

But the functions are clearly stable, if Q and G are stable. Correspondingly, if either one
is unstable, the system is internally unstable.

b. These systems can be represented in the form (parameterization)

G=(1-QK)'Q=Q(l -KQ)™

where Q is any stable transfer function matrix.

Problem 3. Consider the control configuration shown in the figure (known as the Smith-
predictor). Calculate the closed loop transfer function and verify the idea behind this
controller. Compare to the IMC-controller and prove that the Smith predictor always
leads to an internally unstable system, if the process is unstable.
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Solution: By using block diagram algebra the transfer function from r to vy is easily
calculated to be



Y(s) = _G.(8)6() e R(s)
1+G,(S)G(s)
which reveals the idea behind this control configuration: the basic controller G, can be
designed to give a good closed loop response without paying any attention to the process
delay. The real response is then the same but added with a pure delay T. The term ™"
is not shown in the characteristic equation (which would happen, if G, would directly
control the process with delay). But note that in this ideal case the process is exactly

known and the intermediate block in the controller generates the predicted value of the
output. In reality an inaccurate process model has to be used for this purpose.

But: moving the block Ge™" in the figure a bit (without changing the control signal u, of
course), the configuration below is obtained. That is directly the IMC-structure. There

c

»Ge ()

But what if the process G is unstable? Look at the previous problem, in which it was
shown that the closed loop system is internally unstable, if Q or G is unstable. Because
the Smith predictor structure was above shown to be equivalent to the IMC-structure, the
closed loop is inevitably (internally) unstable, if the process is unstable.

Problem 4. Consider the IMC control structure, which is used to control a stable and
minimum phase SISO process G.



Note that in addition to the reference r a disturbance signal dy is modelled to enter at the
output of the process. By using the IMC design discussed in the lectures analyse the
response to step inputs at r and dy.

Solution:

The figure represents a two-degrees-of-freedom control configuration, where the inputs
to the controller K are r and y. Again, it is easy to write

u=Q[r-(y-Gu)]=Q(r-y)+QGu=u=(1-QG)"Q(r-y)

But that can be interpreted as a one-degree-of-freedom configuration with the controller

u=K,(r-y), K1=(I—QG)-1Q=% (SISO

Using the design (see lecture slides). G has more poles than zeros

1
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G™ and writing equations from the topology in the figure

GK
=d +Gu=d +GK (r-y)=y= Lr+ d
Y= g {r=y)=y 1+GK, 1+GK, ’

Setting K to this gives after simple calculations
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Note that GQ = QG for SISO systems. Alsoy =GQr +(1-QG)d, could have been
obtained directly from the figure (careful!).
{wﬁu+dy

u=(1-QG)™Qr-(1-QG)™"Qy
< y=G(1-QG)™Qr+d,
< y+G(1 -QG) ™ Qy =G(I —QG)’lQr+dy
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Setting s = 0 we find that the static gain from r to y is 1 and from dy to y it isO, so that the
output follows the reference and mitigates the disturbance asymptotically. Note that
internal stability was guaranteed by the fact that G was stable and minimum phase (G
stable) and Q stable.

Program code

% Model-based control systems

s=tf('s"'");

G=1/((0.2*%s+1)*(s+1))*[1 1;142*s 2];
GO=[1 1;1 27;

RGAGO=GO.* (inv (G0)) ';

sigma (G) ;

o\

% Let us try a pairing ul-yl, u2-y2 first. PID
control.

$[Fyl,Infol]l=pidtune(G(1,1), 'pid");
$[Fy2,Info2]=pidtune(G(2,2), 'pid");



%1 DOF controllers
sFy=[Fyl 0;0 Fy2];
SFr=Fy;

% Let us then try a pairing ul-y2, u2-yl. PID
control.

$[Fyl,Infol]l=pidtune(G(1,2), 'pid");
$[Fy2,Info2]=pidtune(G(2,1), 'pid");

%1 DOF controllers
sFy=[0 Fyl;Fy2 0];
SFr=Fy;

%$SVD and construction of pre- and post
compensators

[U,S,V]=svd(GO) ;

Wl=V,; W2=U0"';

$Diagonalazied plant; design of controller
Gworm=minreal (W2*G*W1) ;

[Fplworm, Infol]=pidtune (Gworm(1l,1), "'pid");
[Fp2worm, Info2]=pidtune (Gworm (2, 2), 'pid");
%1 DOF controller in "worm" domain
Fpworm=[Fplworm 0;0 Fp2worm];

% 2 DOF

Fy=Fpworm*W2;

Fr=Fpworm*inv (W2) ;

G=G*W1l; % Modified plant

$Sensitivity functions
L=minreal (G*Fy) ;
S=minreal (inv (eye (2)+L)) ;
Tcomp=minreal (eye (2)-S);
Gc=S*G*Fr;

Gc2=Gc;

figure (1)
sigma (L, S, Tcomp)
title('Functions L, S, T')
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$Simulation
T=0:0.01:10;

figure (2)

Uinp=ones (length(T), 2);
subplot (221)
1sim(Gc2,Uinp, T)
title('Step(l,1)")

S

Uinp=[ones (length(T),1) zeros(length(T),1)];
subplot (222)

lsim(Gc2,Uinp, T)

title('Step(1,0)")

S

Uinp=[zeros (length(T),1) ones(length(T),1)];
subplot (223)

lsim(Gc2,Uinp, T)

title('Step(0,1)")

S

Uinp=[zeros (length(T),1) =zeros(length(T),1)];
subplot (224)

lsim(Gc2,Uinp, T)

title('Step(0,0)")



