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Exercises Session 5: Solution

Exercise 1
A nonlinear system dynamic model of a robot moving on the plane is given
by the following equation.

xk+1
yk+1
θk+1
vk+1

 =


1 0 0 ∆tcos(θk)
0 1 0 ∆tsin(θk)
0 0 1 ∆t

L
tan(ϕ)

0 0 0 1



xk
yk
θk
vk

 + qk (1)

Where v is the speed of the vehicle, θ is the heading and qk is the process
noise vector with covariance matrix Qk. This covariance matrix can be as-
sumed to be a diagonal matrix. The parameter ϕ is the steering angle and
is considered a known input to the system. The constant parameter L is the
distance between the front and back wheels of the robot. Here we assume
L = 15cm.

Only the positions x and y of the robot are measured. The measure-
ment noise is assumed Gaussian with zero mean and has 0.5 meters standard
deviation. The measurement noise of the x-axis and y-axis are assumed in-
dependent.

1. Write the measurement equation for the system.

2. Implement the bootstrap particle filter to estimate the state of the
system.
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Solution Exercise 1
The bootstrap particle filter is one of the simplest (basic) forms of the particle
filter method. It uses the dynamic model as the importance distribution. See
the provided Matlab script for the implementation.

Figure 1: Comparison of PF estimate with the true trajectory and the mea-
surement
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Figure 2: Comparison of PF estimate with the true heading

Figure 3: Comparison of PF estimate with the true speed
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Exercise 2
The objective is to estimate the pose and movement of a ship moving in
the inland waterways. The GPS position and the National Marine Electron-
ics Association (NMEA) standard velocity, true speed, and ground heading
(VTG) measurements are available.

The task is to set up an Extended Kalman Filter (EKF) to estimate the
instantaneous position of the ship.

Solution Exercise 2
The model equations comprises of equations (2-5), which describe a vessel
moving straight ahead with a constant speed. Together we denote them as
f(x, y, s, ψ, k). In our case, the control input uk is not known so there is no
deterministic control term in the equation. Thus, all the control inputs to
the model can be considered as noises from the modeling point of view.

xk+1 = xk + ∆tsk cos(ψk) + ηk (2)
yk+1 = yk + ∆tsk sin(ψk) + ζk (3)
sk+1 = sk + νk (4)
ψk+1 = ψk + κk (5)

In the measurement model, the 2D position coordinates in latitude and longi-
tude format together with the heading angle are available as measurements.
Note that, one degree in latitude direction corresponds to 111.12 km. The
distance corresponding to one degree in longitudinal direction depends on
the location of the vessel in latitude coordinates. However, for small traveled
distances it can be assumed that the distance corresponding to one degree
in the longitudinal direction can be approximated with the cosine of latitude
angle in degrees multiplied by 111.12 km. Thus, we write the measurement
model as:

latk = xk
111120 + lat0 + αk (6)

lngk = yk
111120 cos(latk)

+ lng0 + βk (7)

hdgk = ψk + γk (8)
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The system and measurement models are represented as

x(k + 1) = f
(
x(k)

)
+ q(k)

y(k) = h
(
x(k)

)
+ r(k)

The correction (or, update) step is written as

x̂(k|k) = x̂(k|k − 1) +G(k)
(
y(k) − h

(
(x̂(k|k − 1)

))
G(k) = P (k|k − 1)HT

(
HP (k|k − 1)HT +R

)−1

P (k|k) = P (k|k − 1) −G(k)HP (k|k − 1)T

with the prediction step given as

x̂(k + 1|k) = f
(
x̂(k|k)

)
P (k + 1|k) = FP (k|k)F T +Q.

Notice that the symbols are otherwise the same as in the KF, but matrices
F and H are the Jacobian matrices computed at x̂(k|k − 1) in the correc-
tion/update step. So, an extra computational workload is present in EKF as
these Jacobians have to be computed at each update step. Whereas in the
case of KF, the matrices F and H were assumed time-invariant. Moreover,
if only one of the systems or measurement models is non-linear, the Jacobian
matrix need only be calculated for that model. In our example, the state
vector contains {x, y, s, ψ} as state variables.
The Jacobians are computed as;

F =


∂xk+1
∂xk

∂xk+1
∂yk

∂xk+1
∂sk

∂xk+1
∂ψk

∂yk+1
∂xk

∂yk+1
∂yk

∂yk+1
∂sk

∂yk+1
∂ψk

∂sk+1
∂xk

∂sk+1
∂yk

∂sk+1
∂sk

∂sk+1
∂ψk

∂ψk+1
∂xk

∂ψk+1
∂yk

∂ψk+1
∂sk

∂ψk+1
∂ψk



=


1 0 ∆t cos(ψk) −∆tsk sin(ψk)
0 1 ∆t sin(ψk) ∆tsk cos(ψk)
0 0 1 0
0 0 0 1



5



with

H =


∂latk

∂xk

∂latk

∂yk

∂latk

∂sk

∂latk

∂ψk
∂lngk

∂xk

∂lngk

∂yk

∂lngk

∂sk

∂lngk

∂ψk
∂hdgk

∂xk

∂hdgk

∂yk

∂hdgk

∂sk

∂hdgk

∂ψk



=


1

111120 0 0 0
0 1

111120 cos(lat0) 0 0
0 0 0 1


In principle, the covariance matrices Q and R can be estimated from the
instrument calibrations, and/or from the modeling experiments. Ultimately,
the covariance matrices are the designer’s control parameters, which are
mainly determined through the trial-and-error method.
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