
Chapter 7

• LQG control
• Robustness of LQG control
• Loop transfer recovery (LTR)
• Formal loop shaping
• Some extra material for your own reading (not required)
• Final steps in the course
• Course end



Chapter 7:  LQG-control
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Note:

LQG theory (Linear-Quadratic-Gaussian) means optimal (LQ)
control with Gaussian noise disturbances present.  The
stochastic theory of continuous time systems is difficult. 

It is possible to present the theory in a ”simplified” form, but
that is omitted here.  The important thing is to know that noise
intensities (variance does not exist for continuous time
stochastic signals) are mostly used as tuning parameters only.
The optimal state estimator, Kalman filter, is used to estimate
the states, which are fed back according to the LQ theory.

LQG = Kalman filter + LQ 
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Spectral description of disturbances

To a m-dimensional u(t) a hermitian m x m-matrix )(u

(spectrum, spectral density)

If G is a linear and stable system, then

)()()( tupGty 

)()()()( *  iGiG uy 

is attached,
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The spectral density is defined

)()()( *  iUiUu 

in which
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Covariance vs. signal size  (Parseval’s theorem)
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m x m-dimensional matrix
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Two signals do not correlate, if their cross-correlation
spectral density is identically zero.

The signal is called white noise, intensity R, if its spectral
density is constant at the the frequency range

Re  )(

The history of a white noise signal does not give any
information of the future values of the signal.

R is known as the intensity of the signal.
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General state-space realization of the process is

and the criterion
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Consider the regulator problem (r = 0)
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Solution (without proof): Let (A,B) be stabilizable and (A,C) detectable.
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The optimal control law is

in which the Kalman gain K is obtained by the Riccati equation
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and the state feedback coefficient L

SBQL T1
2


where S is the solution to the stationary Riccati equation (LQ)

01
21   SBSBQMQMSASA TTT

(symmetric and positive semidefinite solution)

(Note that only infinite optimization horizons are 
considered here, so that the stationary Riccati equations can
be used. )
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The solution has the separation property :  the optimal
state observer and optimal state feedback can be designed
independent of each other.  The whole solution is then
the  ”combination” of these.

The theory guarantees that the resulting closed-loop
system is stable.

Terms:  LQ (linear quadratic)
LQG (linear quadratic gaussian)
ARE (algebraic Riccati equation)
(Separation principle)

If the states are measurable , y = x, the Kalman-filter 
is not needed and the state feedback is formed directly
from the state.
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Matlab:

kalman, estim
lqgreg
lqr, dlqr
lqe, dlqe
lqrd
sigma, dsigma
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But how about the robustness of the LQ (LQG) –
controller ?
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Not necessarily very good!

The weight matrices and noise intensities can be
thought to be tuning parameters in control design.

After design the frequency domain analysis and
simulations must be carried out to verify the performance
of the controller.  Next, consider robustness a bit closer.



Robustness of LQ/LQG-controllers
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LQ:
( ) ( )

( ) ( ) ( )
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But in that transfer function
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L is determined from the equations

and now it holds (apply the lemma 5.2 in the textbook)

   2 2( ) ( )
T

I H i Q I H i Q    

which in SISO-case is

1 ( ) 1H i 
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That means that the Nyquist curve will never go inside
the circle shown in the figure:

-phase margin at least 60 degrees
-gain margin infinite
-the magnitude of the sensitivity function is less than 
one

-the magnitude of the complementary sensitivity 
function is smaller than two. 
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LQG:
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looked from the output or input side of the process .  ( For 
SISO-systems the functions are the same.)

But now the good robustness properties do not necessarily
hold, even though K and L have been chosen according to
the LQG-formulas (the phase margin can even be
arbitrarily small).

An idea to fix that problem:  let L be chosen as above.
Can K be chosen such that

   1 1 1( )yF G L sI A BL KC KC sI A B L sI A B
        

which would make it possible to enjoy the ”ideal” 
loop transfer function again.
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Result:  Yes, it is possible by choosing

K B

where ρ is large enough.  That holds generally and also
in MIMO case; the number of inputs and outputs must
be the same.

This technique is called the loop transfer recovery
(LTR).

The idea is to calculate L as the solution to the optimal
control problem and then change K as described above.  
(To increase ρ until the desired sensitivity functions are
obtained.)  But there is no guarantee that the filter
remains stable.



21

Use another procedure to aim at
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Choose

1 2 ,R R N B  α being ”large”.  Then

2 2 0T T TPA AP KR K BR B   
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where the last two terms dominate, as α grows.  Hence

K B

holds, and also the Kalman-filter remains Ok.

Now the tuning parameters were N, R1 and R2.

Note.  The presented method was input-LTR, because the
loop transfer function was yF G (gain of the input signal)

yGFThere exists also an output-LTR method based on

In SISO-case the two methods are the same.



• Classical idea: use a compensator to get a 
desired loop gain

• New approach: minimization of H, H2 –
norms

• Use of weights, sensitivity functions

Formal “Loop shaping”

System y Gu w 

Control law yu F y 
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Sensitivity functions

and weight matrices
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which are used to  ”shape” the sensitivity functions. But
the dimension of the system and the compensator grow.



Generalized control configuration
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”weights” are used to form an 
augmented system
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Generalized control configuration.  When the control loop
is closed, the transfer function from w to z is obtained.
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and the motivation of using the 
weights becomes obvious.  Similarly,
it is clear why the norms between w 
and z are minimized for performance.
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Control design can be carried out based on the generalized
process model Ge e.g. by using the  Matlab commands 
mixsyn, hinfsyn and h2syn (Robust Control Toolbox).

But look at the issue from theoretical viewpoint.  Form a
realization of the open loop system Ge with inputs u,w
and outputs z,y

x Ax Bu Nw

z Mx Du

y Cx w

  
 
 



where certain assumptions have been made (z does not
depend directly from w, y does not depend directly from
u).  Moreover, assume that    0TD M D I



The assumptions are sometimes restrictive (they are needed
for the mathematic solution to be appropriate), but often
they can be relaxed, if needed .  (In this case the solution
gets more difficult and nasty to derive.)

To see how this can be done, let be invertible.  Change
variables from u to

which gives

Now which is easy to verify.

TD D

   1/2 1/2T T Tu D D u D D D Mx


 

    1 1/2
, ,T T Tz Mx Du M I D D D D M D D D D

 
       

 0TD M D I   
  



Example. DC motor 
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Use simple weights 1, 1, 1/u T SW W W s  

An augmented system model is obtained by taking the new
state (see the figure)  3 3 3

1
,z x x Gu w

p
  



giving

 

0 0 0 20 0

1 1 0 0 0

0 1 0 0 1

0 0 0 1

0 1 0 0

0 0 1 0

0 1 0

x x u w

z x u

y x w

     
             
          
   
       
      

 



which also fulfils    0TD M D I

Control design is done from this model, the dimension of
which has grown because of weights.  In more complex 
cases it is more difficult to form the extended state 
representation.  But see Matlab command augw.



In Matlab, the command mixsyn turns out to be helpful here.   

[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3)

mixsyn H-infinity mixed-sensitivity synthesis method for robust
control design. Controller K stabilizes plant G and minimizes
the H-infinity cost function

||   W1*S ||
|| W2*K*S ||
||   W3*T ||             

where
S := inv(I+G*K)         % sensitivity
T := I-S = G*K/(I+G*K)  % complementary sensitivity
W1, W2 and  W3 are stable LTI 'weights' 

Inputs:
G         LTI plant
W1,W2,W3  LTI weights (either SISO or compatibly dimensioned MIMO)

To omit weight, use empty matrix (e.g., W2=[] omits W2)



Outputs:
K         H-infinity Controller
CL        CL=[W1*S; W2*K*S; W3*T]; weighted closed-loop system
GAM       GAM=hinfnorm(CL), closed-loop H-infinity norm
INFO      Information STRUCT, see HINFSYN documentation for details



G=ss(-1,2,3,4);   % plant to be controlled
w0=10;     % desired closed-loop bandwidth
A=1/1000;  % desired disturbance attenuation inside bandwidth
M=2 ;      % desired bound on hinfnorm(S) & hinfnorm(T)
s=tf('s'); % Laplace transform variable 's'
W1=(s/M+w0)/(s+w0*A); % Sensitivity weight
W2=[];                % Empty control weight
W3=(s+w0/M)/(A*s+w0); % Complementary sensitivity weight
[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3);

Plot results of successful design:
L=G*K;  % loop transfer function
S=inv(1+L); % Sensitivity
T=1-S;      % complementary sensitivity

Example:



Mixsyn does the H infinity problem formulation automatically
and solves the problem.  If you use the command hinfsyn, 
you have to form the augmented plant yourself and pose the
problem accordingly. 

This is Mixed Sensitivity Design, an advanced form of
Loop Shaping Control.



Example of control design
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100
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10 1dG s
s
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Command tracking + disturbance rejection problem

Both demands are difficult to meet simultaneously
(trade-off in control design)

Let us try loop shaping by H∞ control.



Example of control design...

% Mixed sensitivity design
%
% Uses the Robust Control Toolbox
%
s=tf('s');
G=200/(10*s+1)/(0.05*s+1)^2;
Gd=100/(10*s+1);
M=1.5; wb=10; A=1e-4;
Ws=tf([1/M wb], [1 wb*A]); Wu=1;
[Fy,CL,gopt]=mixsyn(G,Ws,Wu,[]);
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Because the load response is very
poor in design 1, higher gains for
the controller at low frequencies are
needed (integral action).   

To that end, use

2PW ,and the

result is clearly
better.



Some norm theory (not required…..to the end of slides):

w z

G

Measure the output z by using the 2-norm

2

2
( ) ( )i

i

z t z d 




  

Note.  In what follows the norm is denoted by ”two bars”
to make a distinction to the absolute value of a scalar 
value.  (The textbook uses, for some obscure reason, two 
bars only in the case of a system norm).
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1
( ) tr ( ) ( )

2
G s G i G i d  







 

The system 2-norm (euclidian norm) is

where

is called the Frobenius norm.  The system must be ”strictly
proper”, D=0, in order the 2-norm to be finite.  By using
the Parseval theorem

  2 2

2 2
, ,0 0 0

( ) ( ) tr ( ) ( )T
ij ij

i j i j

G s g t g g d g d g d    
  

      

2 2*

,

tr ( ) ( ) ( ) ( )ij F
i j

G i G i G i G i    



and it is seen that the  2-norm can be interpreted as a size
measure of the output, when impulses are fed at the input.  
That has a connection to the stochastic interpretation,
because impulse inputs can be interpreted to be white noise.

H2 –norm is then:

2 2
( ) max ( )G s z t when input w is composed of unit

impulses.

Let the system be ”proper” (not necessarily ”strictly”,
D can be non-zero).  Define the H - norm

 ( ) max ( )G s G i


 



the maximum of the largest 
singular value of the frequency 
function



It can be shown that

2

( ) 0
2

( )
( ) max

( )t

z t
G s

w t 


is the largest gain to non-zero input signals.

Differences between H2 – and H- norms: 

2 2

2
,

1 1
( ) ( ) ( ( ))

2 2ij i
i j i

G s G i d G i d    
 

 

 

   

(because it can be shown that the Frobenius norm can be
written by means of singular values; not proved here)



It is seen that the minimization of these norms means:
H : minimize the maximum of the largest singular

value
-H2:    minimize all singular values of all frequencies

But what are the consequences of all this?  We considered
the closed-loop system
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and now
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2ec ec ecG s G i G i d  






 

so that

These should be ”pushed down” on the whole frequency
range.  But as that could be interpreted as the minimization
of the impulse response, set the criterion

2 2 2 2

2 2 2 2

1
( ) ( ) ( ) ( ) ( ) ( ) ( )

2ec S T u wuG s W i S i W i T i W i G i d      






    
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2 2

2

2 2

2 2

( ) ( ) (T
y

T T T T T T T T

V F z Mx Du Mx Du Mx Du

x M Mx x M Du u D Mx u D Du

Mx u

       

     

 

The familiar LQ (LQG) –criterion was obtained.  So, H2 –
minimization corresponds to LQ(G) –control.  The 
difference is the more general formulation (generalized 
model, input and output variables,weights), when compared
to the conventional LQ-theory.  But note that it is easy to
formulate this kind of a control problem, which does not
have a solution; H2-norm is then not finite.

where the assumption has been used

   0 0,T T TD M D I D M D D I   



The solution is a state feedback from reconstructed states
(if the states cannot be measured, the Kalman filter must
be used).

But what about H-control:  The norm to be minimized is

 max  ( )ec ecG G i


 



the largest singular value of the closed-loop system.

But that cannot be made analytically!  Instead, try to find
a controller, which fulfils

Gec 

 find iteratively the smallest , for which 

a corresponding controller exists.



Result:  Consider the open loop
x Ax Bu Nw

z Mx Du

y Cx w

  
 
 



where    0TD M D I

If the Riccati equation

 2 0T T T TA S SA M M S NN BB S     

has a positive semidefinite solution, then for the system
controlled by

ˆTu B Sx 
it holds that

2 2
z w



for all inputs w.  But the 2-norm of the signals 
induces the system -norm. Then the -norm of 
the system is smaller than .

The design procedure:
1. Determine the generalized plant G.
2. Design weights Wu, WS,WT .
3. Pick .
4. If the controller exists, make  smaller, otherwise

make it larger; iterate until the smallest  has been
found (so-called -iteration).

5. Investigate the properties of the closed loop; if not
good enough, goto item 2.



Note. 1.  Because of the weights the controller usually has
a high dimension.  Use model reduction techniques to
reduce the dimension without changing much the
controller properties. 

Note. 2. -iteration and the design is done automatically
by the command hinfsyn in the Robust Control-toolbox 
of Matlab.  (Corresponding to h2syn).

The iteration need not be programmed by the designer.



• Today’s lecture no 12 (29. 11) is the last lecture.  The 12th exercise on 
Thursday is the last exercise.  The last homework no 6 has been published.

• Second Intermediate exam (IE2) on Thursday 7.12, 14:00-16:00, room T3 
(T-house).

• First full exam (Kurssitentti) on Tuesday 12.12, 13:00-16:00,  hall AS1. 

• No registrations are needed for these exams.  You can participate in both if
you wish.   Intermediate exams cannot be repeated.  For the full exams later
(next: 8th of January 2024) you have to register.

• For the grading of the course, see lecture slides, Chapter 1.  (If you
participate in both intermediate and full exam, then the better of (IE1+IE2), 
(Full exam), counts.)  Note that when you have been given a grade of the
course, it can never go lower even if you participate in later exams (trying to 
improve the grade).

Final steps
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Contents

• Classical control theory: SISO-systems, linear or 
linearized system models

• Extension to multivariable (MIMO) systems

• Performance and limitations of control

• Uncertainty and robustness,

• IMC-control,

• LQ and LQG control

• Optimal control

• Introduction to Model Predictive Control
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The end

Good luck for the future!


