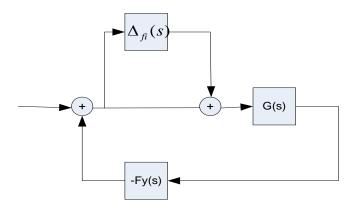
ELEC-E8116 Model-based control systems /exercises 12

Problem 1. Consider a SISO system in a two-degrees-of-freedom control configuration. Let the loop transfer function be $L(j\omega) = G(j\omega)F_y(j\omega)$, where the symbols are standard used in the course.

a. Define the *sensitivity* and *complementary sensitivity functions* and determine where in the complex plane it holds


$$|S(j\omega)| < 1$$
, $|S(j\omega)| = 1$, $|T(j\omega)| < 1$ and $|T(j\omega)| = 1$

b. Let the Nyquist diagram of the loop transfer function approach from below the point where $|S(j\omega_n)| = 1$ and assume that it also holds then $|T(j\omega_n)| = 1$. Assuming that there are no right hald poles of the open loop transfer function, what is the phase margin of the closed-loop system? Hint. In the complex plane (xy) let $L(j\omega) = x(\omega) + jy(\omega)$.

Problem 2. You are given the nominal plant

$$G(s) = \frac{10}{s^2 + 4}$$

with an input feedback uncertainty $\|\Delta_{fi}(s)\|_{\infty} \le 0.5$, and the controller $F_y(s) = \frac{4(s+2)}{s+8}$ (see Fig.) What can be said about robust stability of the closed-loop system?

Problem 3. Consider a SISO system and a state feedback control

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$u(t) = -Lx(t)$$

where L is chosen as a solution to the infinite time optimal (LQ) horizon problem.

- **a.** Prove that the loop gain is $H(s) = L(sI A)^{-1}B$
- **b.** Prove that $|1 + H(i\omega)| \ge 1$
- **c.** Show that for the LQ controller
 - phase margin is at least 60 degrees
 - gain margin is infinite
 - the magnitude of the sensitivity function is less than 1
 - the magnitude of the complementary sensitivity function is less than 2.