Advanced Microeconomics 2 Helsinki GSE Fall 2023 Juuso Välimäki

Final Examination 18.12.2023

You have two hours to complete the examination. Answer all questions.

- 1. Answer the following short questions.
 - (a) Three agents share and consume a single divisible good. The total available amount of the good is \overline{x} . A feasible allocation is a vector (x_1, x_2, x_3) where x_i denotes the consumption of $i \in \{1, 2, 3\}$. What are the Pareto efficient allocations if all i have strictly increasing utility functions u_i that depend solely on their own consumption? How can you find Pareto-optima if each i cares about the consumption utility of all agents so that their utility function is $U_i(x_1, x_2, x_3) = \sum_j \lambda_{ij} u_j(x_j)$, where $\lambda_{ij} > 0$ for all i and all $j \in \{1, 2, 3\}$, and each u_j is a strictly increasing function?
 - (b) Explain how the Gale-Shapley algorithm (also know as the deferred acceptance algorithm) works in a matching model. Show that for all preference profiles, the outcome of the algorithm is pairwise stable.
- 2. Answer the following problems for an exchange economy.
 - (a) Two agents $i \in \{1, 2\}$ have preferences over two goods $\{x, y\}$ represented by utility functions:

$$u_1(x_1, y_1) = x_1 + 2y_1,$$

$$u_2(x_2, y_2) = \min\{2x_2, y_2\},\$$

where (x_i, y_i) denotes the consumption vector of agent *i*. Let (\bar{x}, \bar{y}) denote the total amounts of the two goods in the economy. Find the Pareto-efficient allocations $((x_1, y_1), (x_2, y_2))$ for this society.

(b) Suppose the agents have initial endowments $\omega_1 = \omega_2 = (1, 1)$. Compute a competitive equilibrium for this economy. (c) Suppose that a third agent with utility function:

$$u_3(x_3, y_3) = 3x_3 + 3y_3$$

and an initial endowment $\omega_3 = (5,5)$ is added to the economy. Compute a competitive equilibrium for this economy.

3. Three consumers choose optimal consumption under uncertainty. There are three possible states s of the world: $s \in \{1, 2, 3\}$. The objective probabilities of the states are given by (π_1, π_2, π_3) , where $\pi_1 \ge \pi_2 \ge \pi_3 > 0$ and $\sum_{s=1}^3 \pi_s = 1$ There is a single consumption good for each state and the (Bernoulli) utility for each consumer $i \in \{1, 2, 3\}$ from consumption x_{is} in state $s \in \{1, 2, 3\}$ is given by:

$$u_i(x_{is}) = \ln(x_{is}).$$

The consumers $i \in \{1, 2, 3\}$ have von Neumann - Morgenstern expected utility preferences for consumption vectors (x_{i1}, x_{i2}, x_{i3}) .

(a) Suppose that the consumers have initial endowments across the three states given by:

$$\omega_1 = (3, 1, 1), \quad \omega_2 = (1, 3, 1), \quad \omega_3 = (1, 1, 3).$$

Let (p_1, p_2, p_3) be the prices for consumption in the three states. Formulate the agents' optimization problems for contingent consumptions.

- (b) Solve for the competitive equilibrium prices and the equilibrium allocation. Which agent has the highest expected utility in equilibrium?
- (c) Suppose that the economy has only two assets: a safe asset paying one unit of the consumption good in all states and a risky asset that pays one unit of the consumption good only in state 1. Is the asset market complete and does the first welfare theorem apply to this setting?
- (d) Assume that $p_1 = p_2 = p_3$ and formulate the utility maximization problems of the agents where the first asset sells at price 1 and the second at price q. At equilibrium prices, the aggregate demand for each asset is zero. Determine the sign of the equilibrium trade for each type of agent.