

31E2300 MACROECONOMICS: POLICY

THE THREE EQUATION MODEL FOR OPEN ECONOMIES

- Open Economy Version of the 3-Equation Model
- Uncovered Interest Parity (UIP) Condition
- The AD-ERU Model
- CB Stabilization in the Open Economy and the *RX*Curve.
- Exchange Rate Overshooting/Volatility and Its Causes.

PRELIMINARIES

- To "open" the economy, we'll first focus on a forex market with forwardlooking traders who attempt to profit from arbitrage opportunities.
- Home's nominal exchange rate: $e \equiv \frac{no. \, units \, of \, home \, currency}{1 \, unit \, of \, foreign \, currency}$

A rise in *e* is a depreciation of the home currency.

Home's real exchange rate (RER):

 $Q \equiv \frac{\text{price of foreign goods in terms of home curr.}}{\text{price of home goods}} = \frac{P^*e}{P}$

A rise in Q is a real depreciation of the home currency.

PRELIMINARIES

 We now have two stabilization channels under flexible exchange rates, an interest rate channel and an exchange rate channel

E.g. Shock $\rightarrow \pi > \pi^T \rightarrow CB$ raises $i \rightarrow negative y - gap \rightarrow \pi \downarrow (1)$;

Also, forex mkt expects $i \uparrow \rightarrow$ returns to home bonds \uparrow (arbitrage opportunity) \rightarrow currency appreciates \rightarrow Exports & AD $\downarrow \rightarrow \pi \downarrow$ (2)

- In addition to the int. rate channel (1), we have the exchange rate channel (2)
 → CB raises *i* by less than the closed economy case
- We'll assume that CB and forex market form expectations rationally, even if ...
- ... there is lots of evidence thaty forex markets are prone to fads and manias.

HOW IS THE OPEN ECONOMY EMBODIED IN THE 3-EQUATION MODEL?

- IS relation: Include imports and exports; lower multiplier as some of the increase in income leaks abroad.
- PC: Domestic_{*T*}^E is used to set W. This is the same as Chapter 2, and is a modeling choice. (One can make other choices ...)
- MR: CB may target domestic or CPI inflation (includes Δ P_{imports}); Assume the former, so CB behaves as in Ch. 3
- Before era of higher international capital mobility, forex driven by trade; now, the forex market is dominated by international financial markets:

Purchase and sale of currencies to trade in (public) bonds of different countries \rightarrow Key determinant of exchange rate fluctuations.

SIMPLIFYING ASSUMPTIONS AND UIP

Simplifying assumptions:

- 1. Perfect int'l capital mobility (home can trade unlimited foreign bonds @)
- 2. Small home country (cannot affect world int. rates)
- 3. Households can hold 2 assets: Bonds (home & foreign) and money.
- 4. Perfect substitutability between home and foreign bonds (only difference is expected return; same default risk)
 - 1. If we modify our understanding of "the" interest rate, we can incorporate dafault risk.

The Uncovered Interest Parity (UIP) Condition:

- Explains how forex traders respond to int. rate differences.
- Under 4. above, bonds only differ by expected returns depending on:
 - 1) Expected differences in interest rates across a given time horizon
 - 2) Expected development of the exchange rate over same time horizon.
- In what follows, we call the UK the 'home' (H) economy and the US the 'foreign' (F) economy.

VISUAL REPRESENTATION

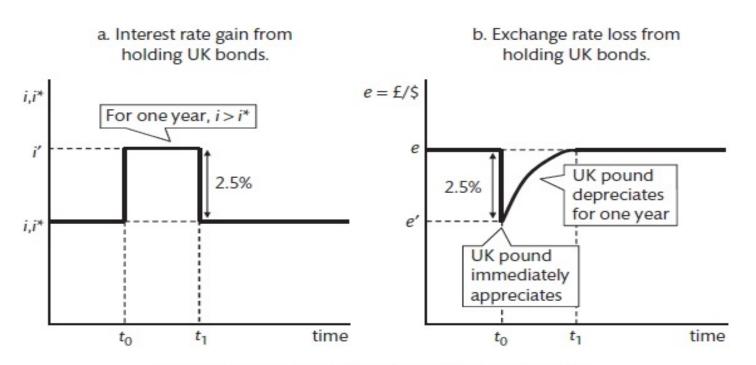


Figure 9.2 Arbitrage in the international bond market.

From t_0 to t_1 , i (UK) \uparrow by 2.5% above i^* (US) \rightarrow UK bonds more attractive \rightarrow Sell USD to buy GBP \rightarrow USD depreciates while GBP appreciates ($e \downarrow$) right away.

Arbitrage: GBP appreciates by exactly 2.5% s.t. the expected returns of UK and US bonds are equal.

Assume: e' expected to reverts to *normal* level e (GBP depreciates) and this represents a 2.5% loss in holding UK bonds.

:: The UIP condition:

"Interest gain from holding H rather than F bonds

= Loss from expected H currency depreciation against F's "

FORMALIZING UIP

• The UIP Condition is $i_t - i^* = \frac{e_{t+1}^E - e_t}{e_t}$, and taking a log-approximation: $i_t - i^* = \log e_{t+1}^E - \log e_t$, i.e. Interest gain = Expected depreciation

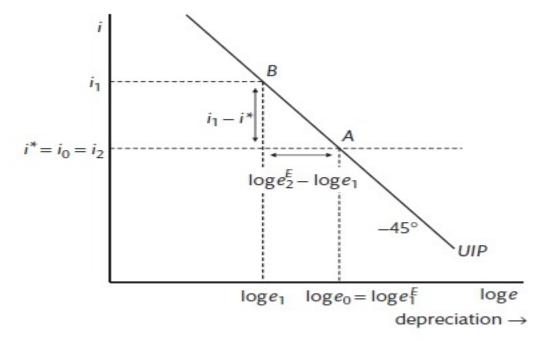
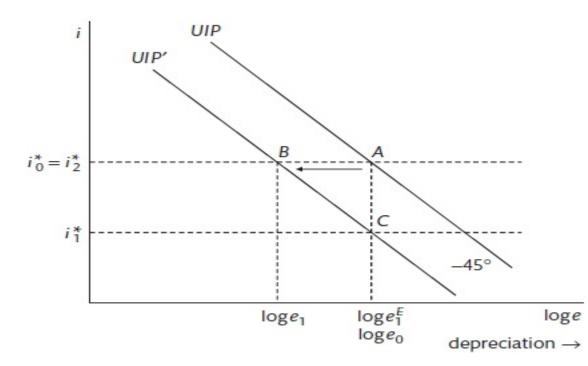


Figure 9.3 The uncovered interest parity condition: $i_t - i^* = \log e_{t+1}^E - \log e_t$.

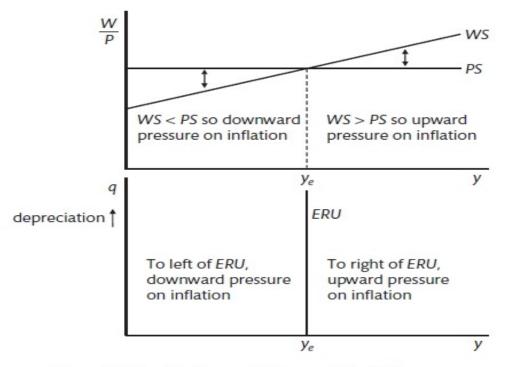

'A': Home int. rate equals world's $(i_t = i^*)$ and exchange rate expectations are fulfilled $(\log e_1^E - \log e_0)$.

'B': Home sets $i_1 > i^*$ for one year, and exch. rate expectation remains at $\log e_{t+1}^E \rightarrow$ exch. rate appreciates immediately to $\log e_1$ s.t expected depreciation over the year equals the int. rate differential: $i_1 - i^* = \log e_2^E - \log e_1$

THE UIP DIAGRAM

1) Slope of -45 °, goes through (log e^E , i^*); 2) $\Delta i \rightarrow$ Movement along curve 3) Given log e^E , $\Delta i^* \rightarrow$ Curve shifts; 4) Given i^* , $\Delta \log e^E \rightarrow$ Curve shifts

E.g. One period fall in i^{*} → UIP shifts down ('B') → log e ↓ → Next period, i^{*} and UIP revert back → No int.
 differential → log e reverts back as well


Assumption: Expected exch. rate is constant

Also: No fall in log e if the CB immediately cuts i to i_1^* (simply, 'A' \rightarrow 'C').

Figure 9.4 The uncovered interest parity condition: a fall in the world interest rate leads to an immediate appreciation of the home exchange rate.

MEDIUM RUN EQUILIBRIUM: THE AD-ERU FRAMEWORK

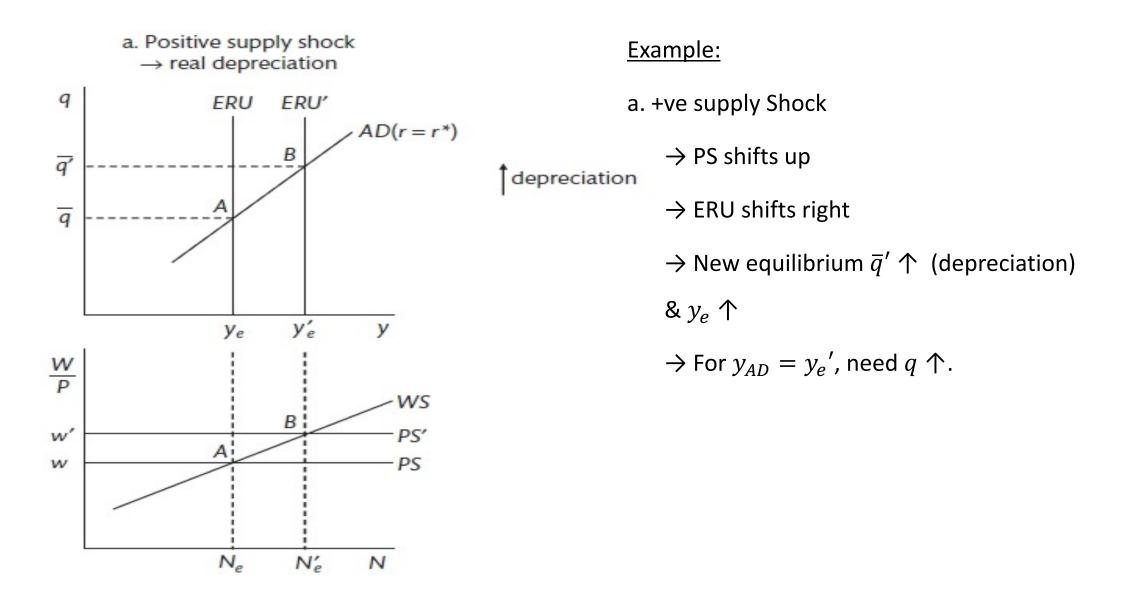
- Medium-run equilibrium (MRE): WS-PS intersection pins down the equilibrium rate of unemployment (ERU) at constant inflation.
- **ERU**: Supply side in equilibrium, inflation is constant.
- AD: Goods market in equilibrium, int. rate equals world level (*i* = *i**). NOTE: THERE IS NO REQUIREMENT, THEN, THAT ECONOMY "BE ON" THE AD SCHEDULE IN THE SHORT RUN. ALSO, THIS IS *NOT* THE USUAL – OR INDEED, ANY SORT – OF "AGGREGATE DEMAND" SCHEDULE.

Supply-side Equilibrium (Ch. 2):

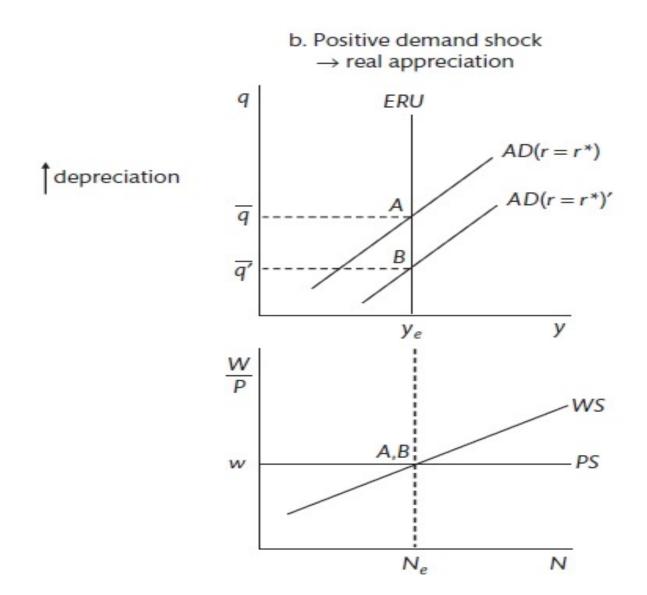
ERU curve: combinations of RER (q) and y at which $w^{PS} = w^{WS}$.

Note: q is log of RER: $q \equiv \log Q$

Figure 9.5 Supply-side equilibrium and the ERU curve.


BUILDING THE OPEN ECONOMY MODEL

- Open economy IS curve: $y_t = A_t ar_{t-1} + bq_{t-1}$.
- $r = r^*$ in MRE b/C under the *real* UIP condition: $r_t r^* = q_{t+1}^E q_t$, $r = r^*$ is necessary for a constant RER.
- Open economy AD curve: $y = A ar^* + bq$ (depreciated RER $\rightarrow y \uparrow$)
- AD curve: Medium-run combinations of real exchange rate and output where the goods market is in equilibrium and $r = r^*$.


The basic medium-run AD-ERU model:

- **1. AD** curve: Demand side, $y = y^{AD}$ (GME), $r = r^*$.
- **2. ERU** curve: Supply side, $y = y_e$, constant inflation.
- **3.** MRE: AD intersects wt. ERU; $r = r^* \rightarrow q = \bar{q}$; $y = y_e \rightarrow \pi$ constant.
- Closed economy: New stabilizing r_S at the medium run after a shock.
- Small open economy: Medium run r pinned down by r* (r = r*), therefore it is q that moves in response to a shock.

EXAMPLE

EXAMPLE

Example:

b. +ve AD Shock

 \rightarrow AD shifts rightwards

 \rightarrow New equilibrium $\bar{q}' \downarrow$ (appreciation)

& y_e costant.

 y_e .

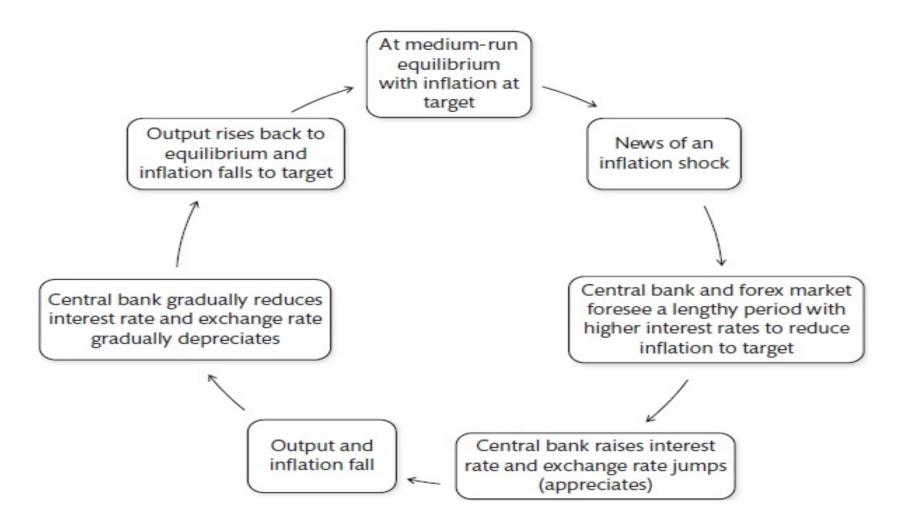
 $\rightarrow r$ is fixed at r^* , so need $q \downarrow$ for $y_{AD} =$

EFFECTS OF SHOCKS ON MEDIUM RUN EQUILIBRIUM

Quick Summary: Shock implications for the med-run equilibrium

 Table 9.1
 Supply and demand shocks: implications for medium-run equilibrium.

	Shock		
	Rise in productivity	Fall in union bargaining power	Increase in autonomous consumption
Equilibrium unemployment	\downarrow	\downarrow	no change
Real exchange rate	depreciation	depreciation	appreciation
Real wage	\uparrow	no change	no change


Note: \uparrow means the variable is higher in the new medium-run equilibrium, \downarrow means it is lower and 'no change' means it is unchanged. We assume a flat PS curve throughout.

STABILIZATION IN THE SHORT RUN: THE RX CURVE UNDER FLEXIBLE EXCHANGE RATES

- RX curve in the 3-eqn model: Shows the CB's best r —response taking into account forex market reactions.
- Assume the CB targets domestic π (excl. imports) and factors in:
 - Forward-looking forex market behaviour
 - The effect of q on y.
- As before, the CB minimizes its loss function subject to the PC, which yields the MR curve showing the desired y-gap.
- The desired y-gap is now implemented through the choice of r:
 - using the open economy IS curve, and ...
 - ... factoring in the reaction of the forward-looking forex market.
- Instead of adjusting back to equilibrium on the IS, the CB <u>adjusts along the flatter</u> <u>RX curve</u> (smaller Δr needed since q moves too).

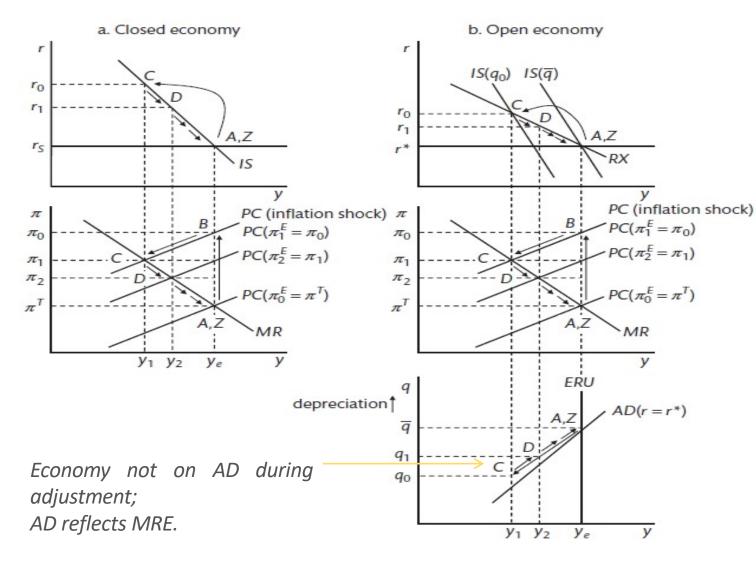

VISUAL REPRESENTATION

Fig 9.7: Dynamic adjustment to an inflation shock under flexible exchange rates and π - targeting

CLOSED V OPEN ECONOMIES: INFLATION SHOCK

Inflation shock: Closed vs Open economies

- Closed economy (Ch. 3)
- Open economy

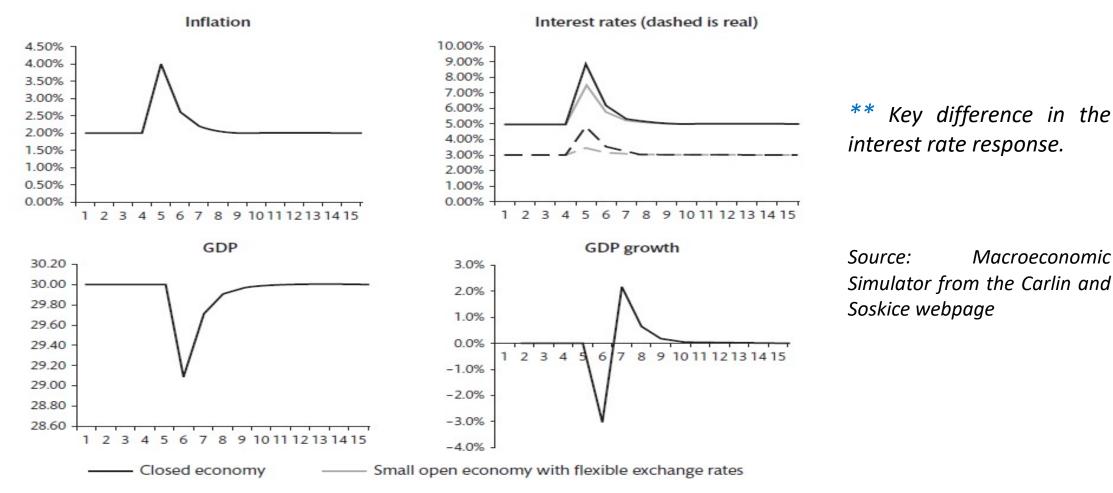
Shock \rightarrow Forex mkt foresees $r > r^*$ for some periods \rightarrow via UIP: $q \downarrow$ immediately \rightarrow to get economy on MR, CB sets r_0 on RX at 'C', which factors in the new $IS(q_0)$.

Higher r_0 and appreciated q reduces ynext period (lag) $\rightarrow y \downarrow \& \pi \downarrow \rightarrow PC$ shifts down & CB desires pt. 'D' now $\rightarrow **$ CB knows that lower r means $\uparrow q \rightarrow IS$ predicted to shift right $\rightarrow As$ before, CB sets r_1 on RX.

Process repeats until MRE 'Z' is reached.

CLOSED V OPEN ECONOMY ADJUSTMENT (CONTINUED)

- 1. Initial rate hike after π shock (to r_0) is greater in closed economy, q appreciation shoulders the burden.
- 2. IS shifts each period in the open economy as the change in q also changes y due to net exports.
- 3. The closed economy moves along IS to equilibrium; the open economy moves along the flatter RX back to equilibrium


Key features of the RX:

- 1. Goes through the intersection of r^* and y_e ; RX shifts iff these shift.
- 2. Slope reflects (i) int. rate and exchange rate sensitivity of AD, (ii) the CB's preference and (iii) the PC's slope:
 - a. Flatter than the IS: RX is flatter if IS is flatter (ie. higher r or q sensitivity)
 - b. Flatter if the MR is steeper (i.e. flatter PC or CB is less π averse)

Note: Flatter RX means CB raises int. rate by less.

CLOSED V OPEN ECONOMIES (INFLATION SHOCK)

Impulse Responses from an inflation shock

Macroeconomic

Figure 9.9 Macroeconomic simulator example-Impulse response functions after an inflation shock (in period 5) in a closed economy and a small open economy with flexible exchange rates.