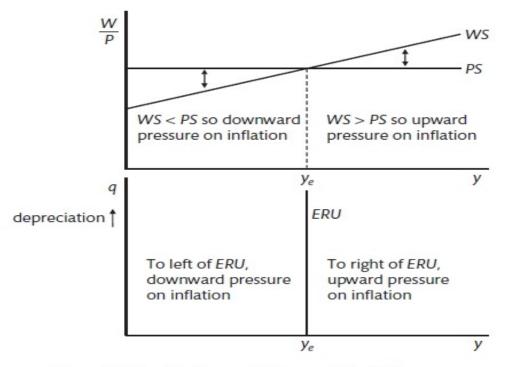


31E2300 MACROECONOMICS: POLICY


THE THREE EQUATION MODEL FOR OPEN ECONOMIES (CONTINUED)

TODAY (AND WEDNESDAY SPILLOVER?)

- The AD-ERU Model
- CB Stabilization in the Open Economy and the *RX*Curve.
- Exchange Rate Overshooting/Volatility and Its Causes.

MEDIUM RUN EQUILIBRIUM: THE AD-ERU FRAMEWORK

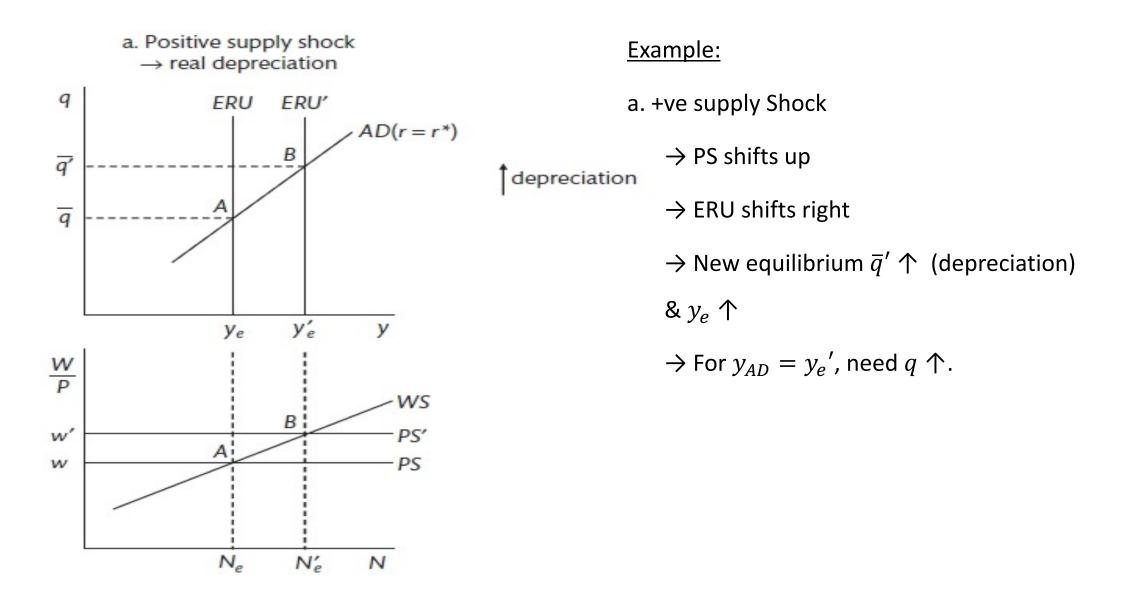
- Medium-run equilibrium (MRE): WS-PS intersection pins down the equilibrium rate of unemployment (ERU) at constant inflation.
- **ERU**: Supply side in equilibrium, inflation is constant.
- AD: Goods market in equilibrium, int. rate equals world level (*i* = *i**). NOTE: THERE IS NO REQUIREMENT, THEN, THAT ECONOMY "BE ON" THE AD SCHEDULE IN THE SHORT RUN. ALSO, THIS IS *NOT* THE USUAL – OR INDEED, ANY SORT – OF "AGGREGATE DEMAND" SCHEDULE.

Supply-side Equilibrium (Ch. 2):

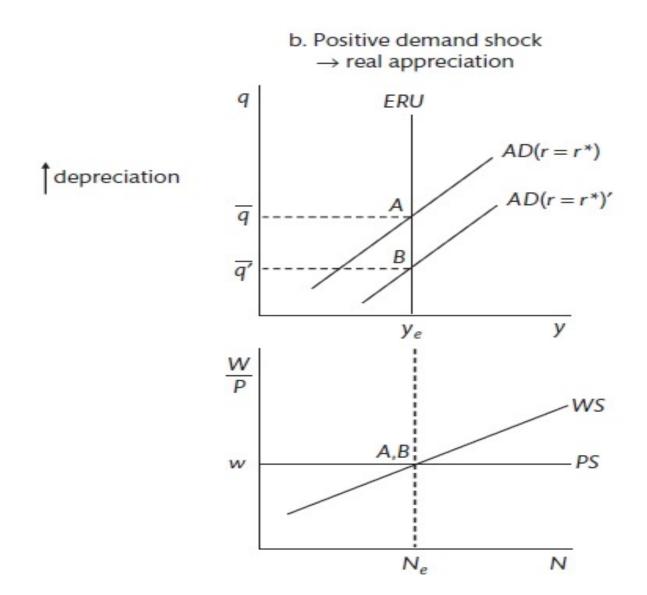
ERU curve: combinations of RER (q) and y at which $w^{PS} = w^{WS}$.

Note: q is log of RER: $q \equiv \log Q$

Figure 9.5 Supply-side equilibrium and the ERU curve.


BUILDING THE OPEN ECONOMY MODEL

- Open economy IS curve: $y_t = A_t ar_{t-1} + bq_{t-1}$.
- $r = r^*$ in MRE b/C under the *real* UIP condition: $r_t r^* = q_{t+1}^E q_t$, $r = r^*$ is necessary for a constant RER.
- Open economy AD curve: $y = A ar^* + bq$ (depreciated RER $\rightarrow y \uparrow$)
- AD curve: Medium-run combinations of real exchange rate and output where the goods market is in equilibrium and $r = r^*$.


The basic medium-run AD-ERU model:

- **1. AD** curve: Demand side, $y = y^{AD}$ (GME), $r = r^*$.
- **2. ERU** curve: Supply side, $y = y_e$, constant inflation.
- **3.** MRE: AD intersects wt. ERU; $r = r^* \rightarrow q = \bar{q}$; $y = y_e \rightarrow \pi$ constant.
- Closed economy: New stabilizing r_S at the medium run after a shock.
- Small open economy: Medium run r pinned down by r* (r = r*), therefore it is q that moves in response to a shock.

EXAMPLE

EXAMPLE

Example:

b. +ve AD Shock

 \rightarrow AD shifts rightwards

 \rightarrow New equilibrium $\bar{q}' \downarrow$ (appreciation)

& y_e costant.

 y_e .

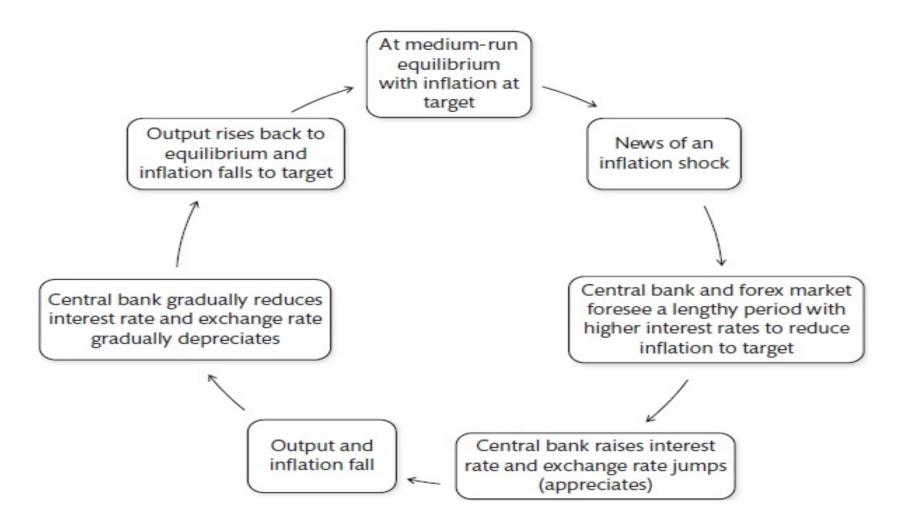
 $\rightarrow r$ is fixed at r^* , so need $q \downarrow$ for $y_{AD} =$

EFFECTS OF SHOCKS ON MEDIUM RUN EQUILIBRIUM

Quick Summary: Shock implications for the med-run equilibrium

 Table 9.1
 Supply and demand shocks: implications for medium-run equilibrium.

	Shock		
	Rise in productivity	Fall in union bargaining power	Increase in autonomous consumption
Equilibrium unemployment	\downarrow	\downarrow	no change
Real exchange rate	depreciation	depreciation	appreciation
Real wage	\uparrow	no change	no change


Note: \uparrow means the variable is higher in the new medium-run equilibrium, \downarrow means it is lower and 'no change' means it is unchanged. We assume a flat PS curve throughout.

STABILIZATION IN THE SHORT RUN: THE RX CURVE UNDER FLEXIBLE EXCHANGE RATES

- RX curve in the 3-eqn model: Shows the CB's best r —response taking into account forex market reactions.
- Assume the CB targets domestic π (excl. imports) and factors in:
 - Forward-looking forex market behaviour
 - The effect of q on y.
- As before, the CB minimizes its loss function subject to the PC, which yields the MR curve showing the desired y-gap.
- The desired y-gap is now implemented through the choice of r:
 - using the open economy IS curve, and ...
 - ... factoring in the reaction of the forward-looking forex market.
- Instead of adjusting back to equilibrium on the IS, the CB <u>adjusts along the flatter</u> <u>RX curve</u> (smaller Δr needed since q moves too).

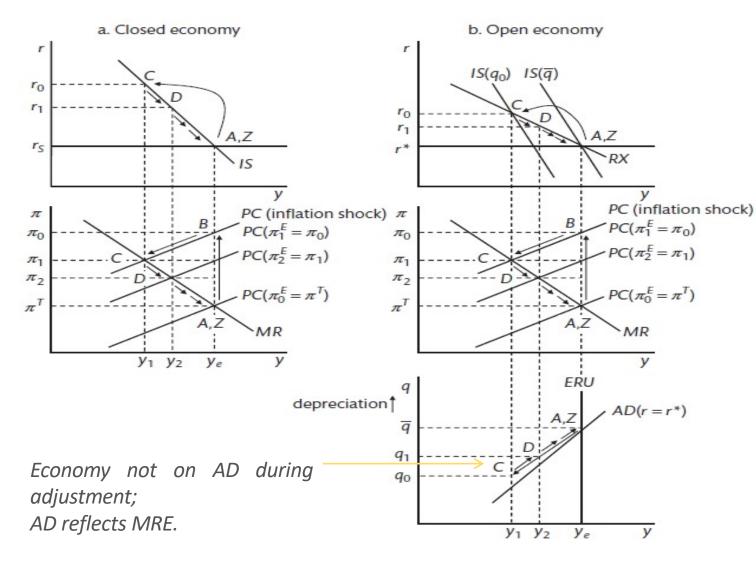
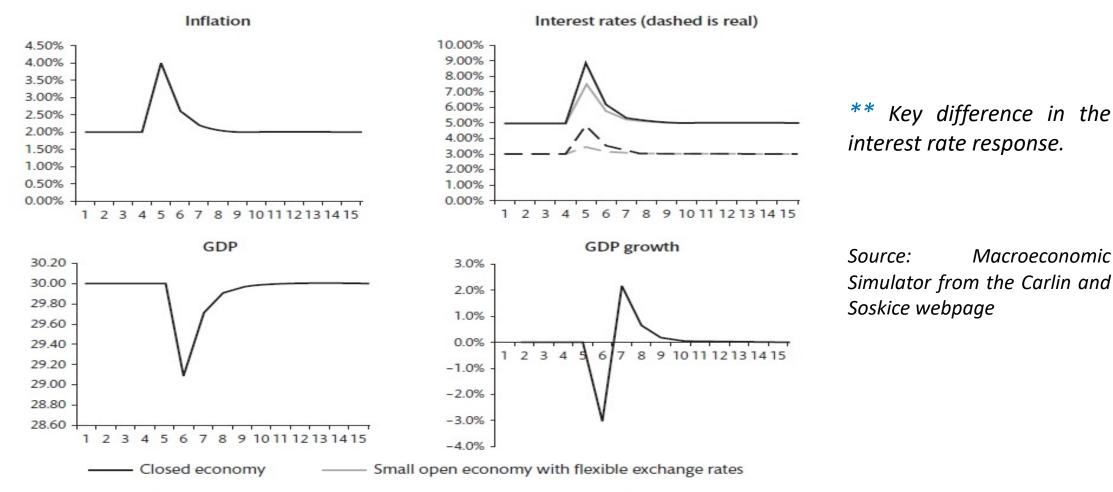

VISUAL REPRESENTATION

Fig 9.7: Dynamic adjustment to an inflation shock under flexible exchange rates and π - targeting

CLOSED V OPEN ECONOMIES: INFLATION SHOCK

Inflation shock: Closed vs Open economies

- Closed economy (Ch. 3)
- Open economy


Shock \rightarrow Forex mkt foresees $r > r^*$ for some periods \rightarrow via UIP: $q \downarrow$ immediately \rightarrow to get economy on MR, CB sets r_0 on RX at 'C', which factors in the new $IS(q_0)$.

Higher r_0 and appreciated q reduces ynext period (lag) $\rightarrow y \downarrow \& \pi \downarrow \rightarrow PC$ shifts down & CB desires pt. 'D' now $\rightarrow **$ CB knows that lower r means $\uparrow q \rightarrow IS$ predicted to shift right $\rightarrow As$ before, CB sets r_1 on RX.

Process repeats until MRE 'Z' is reached.

CLOSED V OPEN ECONOMIES (INFLATION SHOCK)

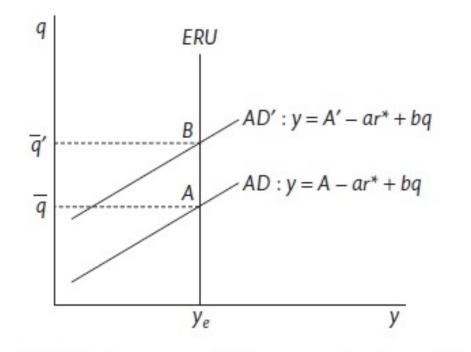
Impulse Responses from an inflation shock

Macroeconomic

Figure 9.9 Macroeconomic simulator example-Impulse response functions after an inflation shock (in period 5) in a closed economy and a small open economy with flexible exchange rates.

CLOSED V OPEN ECONOMY ADJUSTMENT (CONTINUED)

- 1. Initial rate hike after π shock (to r_0) is greater in closed economy, q appreciation shoulders the burden.
- 2. IS shifts each period in the open economy as the change in q also changes y due to net exports.
- 3. The closed economy moves along IS to equilibrium; the open economy moves along the flatter RX back to equilibrium

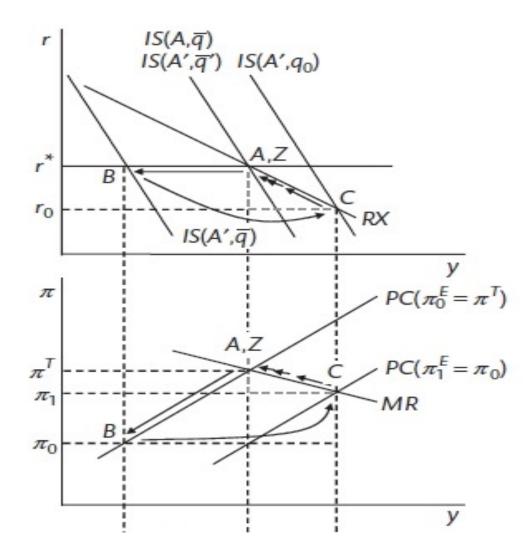

Key features of the RX:

- 1. Goes through the intersection of r^* and y_e ; RX shifts iff these shift.
- 2. Slope reflects (i) int. rate and exchange rate sensitivity of AD, (ii) the CB's preference and (iii) the PC's slope:
 - a. Flatter than the IS: RX is flatter if IS is flatter (ie. higher r or q sensitivity)
 - b. Flatter if the MR is steeper (i.e. flatter PC or CB is less π averse)

Note: Flatter RX means CB raises int. rate by less.

APPLICATION: DEMAND AND SUPPLY SHOCKS IN OPEN ECONOMIES

■ Both types of shock affect the medium run \overline{q} ; see the effect of a negative demand shock ($A \downarrow$) in the AD-ERU diagram below:


<u>Open Economy:</u> Since $r = r^*$ (fixed), a depreciated RER is needed to boost exports and offset the fall in A, s.t. $y = y_e$.

<u>Closed economy:</u>

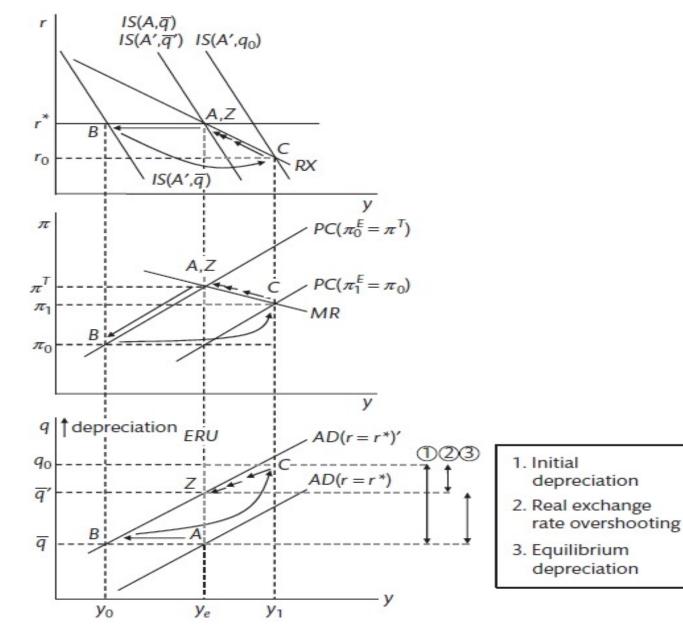
 $A \downarrow$ implies a lower stabilizing real interest rate (r_S).

Figure 9.10 Medium-run equilibrium: negative demand shock.

APPLICATION: PERMANENT NEGATIVE AD SHOCK (FOR EXAMPLE?)

<u>Period 0 ('A'):</u>

-ve AD shock: IS shifts to $IS(A', \overline{q}) \rightarrow y \downarrow, \pi \downarrow \rightarrow CB$ forecasts PC and chooses desired pt. $C' \rightarrow CB \downarrow r \rightarrow$ Forex mkt predicts $r < r^* \rightarrow q \uparrow (u_{P}) \rightarrow CB$ knows this and sets r_0 on RX Economy at: π_0 , y_0 , r_0 and q_0 .


Period 1 onwards:

Lower r_0 and depreciated $q_0 \rightarrow y \uparrow, \pi \uparrow (pt. C') \rightarrow IS$ curve has shifted to $IS(A', q_0)$ due to depreciation.

As the econ shifts from 'C' to 'Z', the IS gradually shifts left; the economy moves up the RX and MR as the CB raises r_0 to r^* ; RER appreciates to \overline{q} .

Note: q moves for UIP to hold every period.

APPLICATION: PERMANENT NEGATIVE AD SHOCK, CONTINUED

Bottom panel (AD-ERU):

-ve AD shock \rightarrow AD shifts left \rightarrow Initial depreciation (\overline{q} to q_0) greater than equilibrium depreciation (\overline{q} to \overline{q}') \rightarrow ie. Exchange rate overshooting.

At pt. 'C', RER q_0 is expected to appreciate over the period to \bar{q}' since $r < r^*$ (UIP).

Pt. 'C' is off the AD curve since $r \neq r^*$. In fact 'C' is to the right of AD as the lower $r < r^*$ results in a higher off-equilibrium y.

EMPIRICAL IMPLICATION: OVERSHOOTING

- Nominal and real exch. rates jump more than equilibrium adjustment to shocks.
- Combination of factors causes overshooting:
 - 1. An internationally integrated financial market
 - 2. Rational expectations in the forex market, lead to jumps in exchange. rate
 - 3. Sluggish adjustment of wages and prices, which requires keeping $r < r^*$ until $\pi = \pi^T$ (for negative AD shock)
 - Integrated financial mkts \rightarrow real UIP cond. always holds: $r_t r^* = q_{t+1}^E q_t$.
 - The greater $r_t r^*$ is needed (big shock), the more q_t has to overshoot.
 - Initial exch. rate jump = equilibrium change + exch. rate overshooting.
 - Dornbusch: Overshooting explains exch. rate volatility.

EXAMPLE: THE THATCHER RECESSION

Exchange rate overshooting during the Thatcher recession:

Tightening of MP (1979) did not lead to an immediate fall in π , but a sharp appreciation in the pound \rightarrow permanent damage to manufacturing sector.

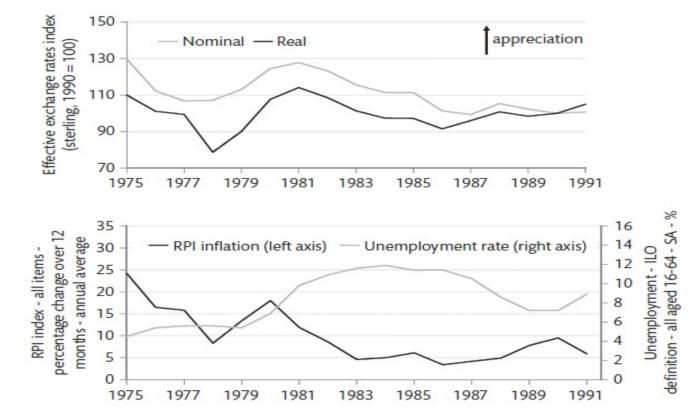
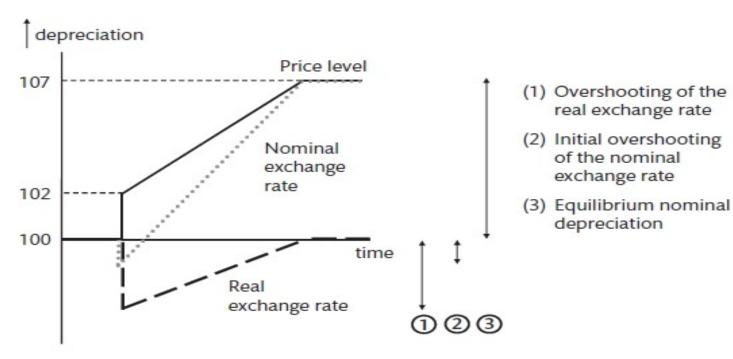



Figure 9.12 UK nominal and real effective exchange rate indices (1990 = 100): 1975-1991 (upper panel) and UK unemployment and inflation: 1975-1991 (lower panel).

MORE ON OVERSHOOTING

Factors determining behaviour of nominal exchange rate:

- 3-equation model focused on the RER (q); nominal e.r. (e) moves according to the definition: $Q \equiv \frac{P^*e}{P}$ (e is simply a residual).
- Below: Stylized path of *P*, *e*, *q* following an inflation shock

Initial nominal appreciation < real appreciation since π shock produced some of required RER appreciation.

During adjustment, nominal depreciation > real depreciation. Gradual real depreciation due to $r > r^*$, is partially offset by real appreciation due to $\pi > \pi^*$.

Figure 9.13 Real and nominal exchange rate paths following an inflation shock.

SUMMARY

- Arbitrage: Movement into H bonds (due to i > i*) causes immediate appreciation s.t. e depreciates over time
 (∴ No gain from H over F bonds)
- The UIP condition shows the relation between $i i^*$ and Δe .
- CB stabilization in the open economy involves factoring in responses by the forward-looking forex market.
- CB's interesy rate response in the open economy is smaller due to the adjustments from the RER channel.
- Overshooting: Initial exch. rate jump > equilibrium change, coming from a persistent period of r >/< r* due to π persistence and a rational forex market.