

31E2300 MACROECONOMICS: POLICY

THE THREE EQUATION MODEL IN ACTION

ANOTHER EXAMPLE: POSITIVE PERMANENT AS SHOCK

Adjustment to a positive, permanent aggregate supply shock:

AS Shock: Shift in WS or PS Curves (see Ch.2)

Equilibrium output increases from y_e to y_e' .

The PC Curve shifts down to PC ($\pi_0^E = \pi^T, y_e'$) due to this change in y_e .

Current output does not change immediately (still at y_e), while inflation falls to π_0 ; Economy moves from A to B.

What do the **impulse response functions** look like?

Figure 3.14 The adjustment of the economy to a positive permanent aggregate supply shock.

QUESTION

DOES IT MAKE SENSE TO TREAT COVID AS A NEGATIVE (TEMPORARY?) AS SHOCK AND, IF SO, WHAT WOULD THE 3-EQUATION MODEL PREDICT?

ANOTHER EXAMPLE: THE DEFLATION TRAP

- Recall the Fisher equation from Ch. 1: $i = r + \pi^{E}$
- The Zero Lower Bound (ZLB) on *i* states that $\min i = 0$, which implies that $\min r \ge -\pi^{E}$.
- If expected inflation is -1%, the minimum *r* attainable is 1%.
- KEY INSIGHT: r cannot be reduced below 1% to achieve y_e, the ZLB is hit and the economy is stuck at a depressed level of output (y₀).

Figure 3.12 The zero lower bound on the nominal interest rate.

THE DEFLATION TRAP IN THE 3-EQUATION MODEL (FOLLOWING PERMANENT NEGATIVE AD SHOCK)

Figure 3.13 How a large negative permanent aggregate demand shock can lead to the economy entering a deflation trap.

Period 0:

- Large & permanent negative AD shock: The IS shifts to IS'.
- Inflation is now negative (Deflation), as the economy moves to point 'B'.
- Given the forecasted PC ($\pi_1^E = \pi_0$), the CB would like to choose optimal point C' on the MR, which requires setting r_0' .
- However, r_0' is below the minimum that can be achieved by setting a zero nominal int. rate, so the CB can only set the minimum $r_0 = -\pi_0$.

Period 1:

- The lower r_0 increases y, but y is <u>still below equilibrium</u> at point C
- Thus, inflation falls further to π_1 and the CB forecasts the next period's PC to be PC ($\pi_2^E = \pi_1$)
- Given this PC, the ideal point for the CB is D', which requires setting r_1' .
- However, the minimum attainable real int. rate is $r_1 = -\pi_1$.
- Thus the economy ends this period with lower inflation at π_1 , lower output y_1 , and a higher real int. rate $r_1 = -\pi_1$.

THE DEFLATION TRAP IN THE 3-EQUATION MODEL (FOLLOWING PERMANENT NEGATIVE AD SHOCK)

Figure 3.13 How a large negative permanent aggregate demand shock can lead to the economy entering a deflation trap.

Period 2 onwards:

- The higher interest rate r_1 dampens demand, output and inflation both fall to y_2 and π_2 respectively (point 'D').
- The economy enters a <u>Deflation Trap</u>: In each future period, inflation falls further, causing *r* to increase and output to fall continuously.
- Conventional (int. rate based) monetary policy is ineffective in reverting the economy back to its medium-run equilibrium.

SOLUTIONS TO ZLB PROBLEMS

- 1. Shifting the IS rightwards (through point 'G') after the initial AD shock.
 - o e.g. Increase in autonomous consumption or investment; Fiscal Policy.
 - CB can then achieve desired point C' by setting r_0 .
- 2. Creating more positive inflation expectations.
 - If inflation expectations are less negative (π^E higher), then min r is lower and the PC curve shifts up.
 - Conventional MP now works to bring the economy back to equilibrium.
- 3. Unconventional Monetary Policy (Ch. 7)

A WORD OR TWO ABOUT EXPECTATIONS

- Expectations are formed by households, firms and the state. Expectations influence consumption, investment, wage-setting and policy decisions.
- How is this reflected in 3-Equation Model?
 - i. IS Curve

Tobin's Q: Firms and equity markets form expectations of future profits

Permanent Income Hypothesis: Households form expectations over their future income.

- ii. PC Curve Wage setters form inflation expectations (π_t^E)
- iii. MR Curve

Policy maker(s) forecast inflationary expectations, position of IS curve.

RISK VESUS UNCERTAINTY (VERSUS AMBIGUITY?)

- Expectations are a vital part of economic life, but are more complicated, many would now argue, than standard calculation of expected value.
- Risk is when "well-behaved probabilities," objective or subjective, can be attached to the full set of future outcomes. Economic models have this property, but does life?
- This doesnt mean such models are simple.

e.g. The Bank of England Fan Chart

Figure 4.1 Bank of England's CPI inflation projection based on market interest rate expectations and £325 billion asset purchases.

RISK VESUS UNCERTAINTY (VERSUS AMBIGUITY?)

- According to Keynes and/or Hayek, an environment is uncertain if it is impossible to assign probabilities and/or the full set of outcomes isn't knowable.
- Experimentalists/behavioralists have attempted to capture this with the notion of "ambiguous" or "non-additive" probabilities. Review the Ellsberg Paradox. (It is now common to measure not just risk aversion but ambiguity aversion too.)
- How might uncertainty matter? We're reasonably confident, for example, that increased uncertainty is associated with stock market volatility.

BLOOM (JEP, 2014)

Stock-Market Implied Volatility is Higher in Recessions

The point is not that stock values are (just) lower in a recession but rather that the stock market is also more volatile.

What are the implications for, say, the q-theory of investment?

INTRODUCING CENTRAL BANK CREDIBILITY

Anchoring Inflation Expectations:

- Central bank communication is used to keep inflation expectations (π^E) anchored at the inflation target (π^T) .
- If the inflation target is perfectly credible and π^E is anchored, then an inflation shock will only last for one period.
- There is costless disinflation (unemployment does not rise): The PC reverts back to the one indexed by π^T in the next period.

Modelling CB credibility (χ):

• PC:
$$\pi_t = [\chi \pi^T + (1 - \chi) \pi_{t-1}] + \alpha (y_t - y_e)$$
 where $\pi_t^E = \chi \pi^T + (1 - \chi) \pi_{t-1}$

• Expected Inflation is a weighted average of the inflation target and lagged inflation.

Modelling:

CB Credibility (χ) and the adjustment to an inflation shock:

Figure 4.6 Varying the level of central bank credibility, using the example of an inflation shock: a. Firmly anchored: $\chi = 1$ b. Partially anchored: $\chi = 0.5$.

Modelling:

CB Credibility (χ) and the adjustment to an inflation shock :

 $\chi=0$: Fully Backward-looking

• After a π shock, CB needs to raise r \rightarrow some periods with $y_t < y_e$.

 $\chi=1$: Firmly anchored at $\pi^{\it T}$

• Only 1 period effect of π shock \rightarrow PC reverts to PC ($\pi_0^E = \pi^T$) \rightarrow CB does not need to change $r \rightarrow y_t = y_e$ (Disinflation is costless)

 $\chi = 0.5$: Partially anchored at π^T

- After a π shock, CB needs to raise r, but to a lesser extent than $\chi = 0 \rightarrow$ fall in output is lower, adjustment to equilibrium quicker
- PC shifts down to PC ($\pi_0^E = \pi'$) instead, economy moves to point C