
Testing
CS-C2105, Programming studio A
CS-C2120, Programming studio 2

17.1.2024

• Get an understanding of different kinds
of software failures

• Understand how they could be detected
with different testing approaches

• Understand different ways of planning
test cases

• Learn some key terminology and some
practical hints.

Learning goals for the lecture

17.1.2024

• In round 15 exercises, you will learn to
apply basic unit testing in Scala.

• You will learn basics test driven
development

• In the project, you will plan your testing
and carry out testing in practice.

Learning goals for the course

17.1.2024

• Software failures
• How to design tests
• Practical hints
• Other aspects of testing
• Software development process

Contents

17.1.2024

• Software failure denotes here some
problems which are related to executing
the program.

• Syntax errors, which prevent program
compilation, are not considered failures
here. Program is not executed.

Software failures

17.1.2024

• Software can fail in many different ways
– There is a logical error in the code and program
crashes

• e.g. null-pointer exception or divide by zero
=> exception handling can help detecting the error but not
remove it.

– There is a logical error and the program
calculates incorrect results

• You have seen a lot of these cases…
=> test results can help you to identify the reason for the error

Software failures

17.1.2024

• The program handles well normal cases but
fails to process incorrect input data or other
special cases, like missing input files.
– There is no way to avoid these situations, so

you need to take care of them yourself
Þ exception handling can help here

• Program has not enough execution
resources
– Running out of memory
– Failing to access a class or the class file has

damages.

Software can fail…

17.1.2024

• The program works correctly, but is far
too slow when working with realistic
data…

=> Might be solved by changing to use more
efficient data structures / algorithms.

• Other issues
– The program may have serious security
problems

Software failures…

17.1.2024

• Other issues
– Platform dependencies may cause issues

• Software may not be portable
– Sometimes the program works correctly but

in a surprising way
• undocumented or unexpected feature, e.g.,

Excel in some cases interprets data as date
values.

=> You just have to implement the fixes

Software failures/features

17.1.2024

• The program does not implement the
required features.
– E.g., some essential commands are missing

or do not work.
=> You just have to implement the missing parts

Finally, software can fail…

17.1.2024

• Testing aims at identifying problems in
software.

• As failures are different, testing
approaches must be different

Goal of testing

17.1.2024

• ”Program testing can be used to show the
presence of bugs, but never to show their
absence!”

• Edsger Dijkstra (1930-2002)
– Even rigorous testing cannot prove that

software is faultless.
– But:

• What else could we do to show that our software
works?

• Formal proofs of correctness have a very limited
application area.

Paradox

17.1.2024

• Bug
• Defect
• Error
• Failure
• Feature

Some terms

17.1.2024

• Software failures
• How to design tests
• Practical hints
• Other aspects of testing
• Software development process

Contents

17.1.2024

• Equivalence partitioning
– Consider the space of possible input values
– Split the space into areas and take test cases

from each area.
– For example:

• coordinates from all quadrants
• The Chess problem: input files having different

ordering and selection of blocks
– Makes more sense in unit testing of one

method instead of the whole program level

How to design tests?

17.1.2024

• Boundary value analysis
– Consider boundary cases of input or parameter values

or data structures. Take test cases around them.
– For example

• Suppose some min / max values are specified for a
parameter. What happens with values min, min-1, max,
max+1.

• Off-by-one bugs:
– Check that array index remains within bounds

• What happens with an empty collection (say List), or a
collection with just one item?

• Consider searching/inserting/deleting items in a List. What
happens, if the item is the first or the last one, or does not
exist in the structure?

How to design tests?

17.1.2024

• Fuzz testing
– Consider what happens with wrong input

values:
• Illegal values
• Wrong type of data (e.g., reading ”A” for Int)
• Missing / empty data
• Wrong format in data
• Too large data sets
• Missing input files / cannot access file

– This is something that your project needs to
consider, when assistants test your code.

How to design tests?

17.1.2024

• Use case testing
– Consider typical user actions
– How does the user give commands?
– What information is available for the user?
– What happens in each phase?
– Can the user perform all subtasks?

• How complex it is (usability)

How to design tests?

17.1.2024

• Planning testing is not just about
planning test cases

• You need to design the process, when
and how you test the program.

Design your testing process

17.1.2024

• Do NOT build your whole program before
you start testing.

• Plan initially which parts of your program will
you implement in each phase.

• How could you test each part (package /
class / method) separately?
– What do you need to be able to do it?
– When to use unit testing?
– When to use testing through the user interface?

Design your testing process

17.1.2024

• Create a test class which calls methods of
the tested data structure class or collection,
– e.g., using unit testing

• Give generated data for the methods to
build content in the structure, e.g. insert
generated strings, ints, pairs, … into the
structure to initialize it for testing.

• Build a method to traverse the structure
through and print all values.
– Using REPL could help here

Data structure testing

17.1.2024

• Build the methods your program needs
to manipulate the structure
– Execute the methods with the test data

structure and call the auxialiary method to
print the content and thus allow you to
monitor that the content is correct.

– Test the special cases like empty structure,
structure with one item, possible full
structure

Data structure testing

17.1.2024

• Create a test class which can, e.g.,
– open file
– read file contents and display them
– manage with end-of-file case
– write contents of a given data set (generated

for the test purpose only) to a file
– close file
– cope and recover, when there is errorneous

content or format in the file

File management testing

17.1.2024

• You can build a visually complete user
interface, GUI, including windows, panes,
buttons and menus even though all logic
behind them is still missing. For example:
– Buttons and menus call Dummy methods which

do not do anything (???)
– Or they call Stub methods which return

constant values just to show that the method is
called appropriately, and the GUI responds.

Graphical user interface testing

17.1.2024

• Software failures
• How to design tests
• Practical hints
• Other aspects of testing
• Software development process

Contents

17.1.2024

• At the bottom of course A+ table of
contents is a chapter
– “Finding and fixing errors”
– It has much useful information. Read it!

• Chapter 15.1 present unit testing, which
is an important method for checking the
correctness of small parts of a program.

A+ resourses

17.1.2024

• You can build your own asserts methods also
without Scalatest library.

• Basically assert is a method, which receives as a
parameter a logical expression (exp==something)
to check that it holds.
– exp is a variable in the tested method.
– something is its expected value.
– If the expression is not true, assert prints out a message

for this (or throws an expection) and possibly quits the
program.

– The condition could also be some other comparison, like
• assert(number > 0)
• assert(x > 0 && x < 100)

Asserts

17.1.2024

Example of own assert-function

class TestSupport {

def assert(expression: Boolean, methodName : String) = {
if (!expression) {
println("Assert failed in method: ” + methodName)
System.exit(0) // or something else

}
}
}

17.1.2024

• Debuggers allow you to execute the program in
a controlled way. Most importantly:
– Execute code step by step
– Set breakpoints into the code, where execution

stops
– Explore variable values, when program is stopped

for a while
– Often more elaborated features available, such as

exploring collections or data structures.
• See A+ page “Finding and fixing errors” for

basics.

Debuggers

17.1.2024

• While debugger is a great tool to help
you, printing variable values is a useful
method, too, to follow program execution
and checking that variable values are
correct.

• Assert methods fit well together with this.

Printing values

17.1.2024

• Define a variable to toggle whether you
are in debug mode or mode

val DEBUG_ON = true

Hint: Toggle debugging mode

17.1.2024

class TestSupport {

def assert(expression: Boolean, methodName : String) = {
if (!expression) {
println("Assert failed in method: ” + methodName)
System.exit(0) // or something else

}
}
}
//-------------------

…
If (TestSupport.DEBUG_ON) println (…)
…
If (TestSupport.DEBUG_ON)

TestSupport.assert(x > 0, ”calculation”)

17.1.2024

• All these are related to software failures
which concern bugs.

• Different strategies are needed to
address other types of software failures.

• We discuss them later.

Note

17.1.2024

Break

17.1.2024

