
From Design to Implementation
CS-C2120, Programming studio 2
CS-C2105, Programming studio A

26.1.2024

• Let us revisit the route planner
application.

• From initial design to UML
– Now proceeding directly to UML.
– Using Draw.io as a tool.

Program design cont.

26.1.2024

2

• Understand, how draw.io could be used
in UML design

• Understand, how to proceed from UML to
implementation.

• Understand, how simplified classes can
be used to help implementation.

Lecture learning goals

26.1.2024

3

• Abstraction
• Interface
• Modularization
• Information hiding
• Encapsulation
• Packages

Some important terms

26.1.2024

4

• How to proceed?
• Package design
• Traits vs. classes?
• Data structures
• Dummies, Stubs, Mocks
• Implementing and testing

From UML to Coding

26.1.2024

5

• UML design can be turned into class
definitions in a straightforward way.
– Class names
– Inheritance
– Variables
– Methods
– Visibility

• You will probably add more variables and
methods later, as well as revise method
parameter definitions.

How to proceed?

26.1.2024

6

• When the number of classes grows, it is worthwhile
to consider identifying major components in the
program.
– The program could be split into separate packages.
– One way to implement this split is separating the

following:
• User interface operations (gui)
• Program logic
• File management
• Code for testing your classes

– Many exercise projects in O1 course have separated
Gui and program logic. See examples there.

Package design

26.1.2024

7

• When would you use traits instead of ordinary
classes?

• Recall
– Traits cannot be instantiated.
– Abstract classes not much needed in Scala 3, as traits

can have parameters.
• Traits can be used to define abstract entities

– A class which extends the trait has to implement the
defined features.

• Classes can extend several traits at the same time.
– This allows adding new features (variables, methods) in

classes without using inheritance.

Traits vs. classes

26.1.2024

8

Example: Creatures

26.1.2024 9

26.1.2024 10

This is Scala 2 code

26.1.2024 11

This is Scala 2 code

• Consider relevant questions
– What kinds of data your program will manage?
– What data is mutable, what is immutable?
– How would you access data?

• with indexes, sequentially, mapping, searching?
• Scala has quite extensive set of collections which

help you in managing and storing data in your
program.
– They are highly useful.
– See https://www.scala-lang.org/api/current/
– You can learn more possible data structures on the

course CS-A1140/1141.

About data structures

26.1.2024

12

• DungeonGame has many Levels (fixed)

Examples from DungeonGame

26.1.2024

val world = Vector[Level]();

13

• A level has a variable number of Items
and Monsters.
val monsters = Buffer[CreatureType]();

• A location may have 0..* items
var itemList = Buffer[Item]();

• Player can carry 0..* items
var carrying = Buffer[Item]();

Examples from DungeonGame

26.1.2024

14

• You do not need to complete all classes
at once.

• Using skeleton classes helps compiling
and testing still incomplete programs.
– Testing the program class by class will help

you significantly in tracking errors.

Dummies, Stubs and Mocks

26.1.2024

15

• Use ??? as method “implementation”
– Calls a method of type Nothing

• Allows compilation without doing
anything.

• Thus, you can write all method headings
ready and delay implementation.

Dummys

26.1.2024

16

class Cafe (val coffeemaker: Coffeemaker) {

 def makeOrderTryCatch(amount: Int): Buffer[Coffee] = {
 ???
 }

 def makeOrderTry(amount: Int): Buffer[Coffee] = {
 ???
 }

 def addMilk(coffees: Buffer[Coffee]) = {
 ???
 }

 def addBeans(): Unit = {
 ???
 }

 def cleanMachine(): Unit = {
 ???
 }
}

26.1.2024 17

• Support step-by-step testing.
• Implements a method so that it returns a

“prespecified” value.
• The method can be called when testing

the calling method.

Stubs

26.1.2024

18

• You are implementing a class which
would manage data from a data base.

• You can write a stub class / method
which returns a value without actually
reading it from the data base yet, and
use this value when testing operations.

Stub example

26.1.2024

19

Stub example…

26.1.2024

20

• An extension to a stub.
• Instead of returning always the same value, Mock

can recognize given parameters and return
prespecified values, which correspond to given
parameter values.

• Thus, mocks support ”simulating” more complex
cases when full implementation is still ahead.

• Terminology (dummy, mock, fake, stub, spy) is not
consistent.
– Course material is based on
https://www.techtarget.com/searchsoftwarequality/tip/Insid
e-5-types-of-test-doubles

Mocks / Fakes

26.1.2024

21

• One good practice is to make a testing app with
which you can test your classes and methods one by
one
– Creates/manages input test data which is given to

methods as parameters or in collections
– Checks the correctness of returned values or collection

content.
– Possibly prints out their values for observation

• Alternatively, create a simple user interface which
allows giving values and observing returned results.

• Third option is building unit tests, which is discussed
in Chapter 15.

Stepwise development

26.1.2024

22

Questions

26.1.2024

23

