
Testing, part 2
CS-C2105, Programming studio A
CS-C2120, Programming studio 2

9.2.2024

• Software failures
• How to design tests
• Practical hints
• Various aspects of testing
• Software development process

Contents

9.2.2024

2

• Program functionality
– Software meets the given requirements

• Program correctness
– Software gives correct responses to all kinds

of inputs
• Performance testing

– Performs its functionality in acceptable time
• Usability testing

– User interaction with the software is acceptable

What can we test?

9.2.2024

3

• Software works on the desired platforms
– Different operating systems
– Different devices

• Acceptance testing
– Software meets the general requirements of

the customer

What can we test...

9.2.2024

4

• Alpha testing
– Testing the feasibility of the initial software (or

prototype) among potential customers
• Beta testing

– User acceptance testing for a limited audience
• Functional vs. Non-functional testing

– Functional: what the program should do?
– Non-functional: other aspects like performance,

usability, scalability, …
• Installation testing

– Whether the installation process works correctly

Some more terminology

9.2.2024

5

• Regression testing
– Running a series of tests to discover if anything is

broken after a major change in software
– Typically ready-made regression test sets

• Smoke testing
– Testing whether it is worthwhile to proceed with further

testing
• Stress testing

– Testing the limit capacity of operation, to discover when
the performance breaks down.

• Internationalization and localization
– Testing that the software works in different languages

and geographical / cultural areas.

Some more terminology…

9.2.2024

6

• Static testing
– Code reviews, walkthroughs in collaboration

with a peer.
– Identifying dead code

• Dynamic testing
– Executing program with test cases

Different testing processes

9.2.2024

7

• White-box testing/glass box testing
– Seeks to show that internal structures / algorithms

within program / program unit work correctly.
– Usually carried out in unit testing level

• Black-box testing
– Seeks to show that the program / program unit

produces correct output without considering how it
does it (even with no access to it)

• Gray-box testing
– Have access to source code but perform tests as in

black-box testing.

Different testing approaches

9.2.2024

8

• How widely the test cases cover the code.
– Function coverage
– Statement coverage
– Branch coverage
– Condition coverage
– Path coverage

• Fault injection
• Mutation testing

Test quality

9.2.2024

9

• Debugger is a highly useful aid in many cases.
– See A+ page ”Finding and fixing errors”

• However, debugging graphical user interfaces
can be painful.

• Why?
– Graphical user interface is based on processing
events (mouse click, button click, key click, …)
which are processed separately.

– When you follow program execution, the program
control jumps into event processing, which may be
confusing.

Debugging and user interfaces

9.2.2024

10

• Jumping between uninteresting GUI
methods and the actual logical code in
unexpected ways is disturbing, if you try
to follow progress step-by-step.
– Setting breakpoints only in logical code is a

partial solution.
– But keeping track on which active method

call you are investigating may be
cumbersome.

Debugging and user interfaces…

9.2.2024

11

• One option is to separate the GUI code as well
as possible from the logical code, and test it
separately
– Use stubs or mocks to help you to provide minimal

data for testing and the user interface can deliver
and show data appropriately.

• And, implement a logical part of the program
using command line interaction first (or stubs /
mocks) to provide necessary UI data.
– Test that the logic works properly before you

integrate the parts, followed by integration testing

Debugging and user interfaces…

9.2.2024

12

• Software failures
• How to design tests
• Practical hints
• Other aspects of testing
• Software development process

Contents

9.2.2024

13

• Waterfall model

Software development processes

9.2.2024

14

• Agile software development
– Development is iterative, incremental,

evolutionary
– Works in short cycles covering planning,

analysis, design, coding, unit testing, and
acceptance testing.

– Works in close collaboration with customers
– Scrum is one agile framework having 2

week sprints (and there are many others)

Software development processes

9.2.2024

15

• TDD (test driven development)
– Turns requirements into tests

1. Add a new test
2. Run all tests and see if the new test fails
3. Write code that addressed the new test
4. Run tests and revise code until all tests pass
5. Refactor code
6. Goto 1

Software development processes

9.2.2024

16

• CS-C3150 Software Engineering
• CS-C3180 Software Design and Modelling
• CS-C2130 Software Project 1
• CS-C2140 Software Project 2

Some future courses

9.2.2024

17

