Biopolymers _____ CHEM-E2155

Jan – Apr 2024 Michael Hummel

michael.hummel@aalto.fi

A"

Aalto University School of Chemical Engineering

Course description

This Graduate level course deals with the general topic of *biopolymers*. In this context, this is an **introductory course** in which *Biopolymers* indicate those **derived from renewable resources (bio-based)**, either biodegradable or non-biodegradable, and polymers derived from non-renewable resources that are **biodegradable**.

It also includes those **polymers produced by biological systems** such as microorganisms, plants, or animals, or obtained by chemical synthesis. Fundamentals of the physical chemistry are brought to life with **examples from such fields as biotechnology, paper science, biomaterials**, etc. Topics include synthetic biopolymers, biodegradation, etc.

Learning Outcomes

After the course the student

- knows the most common natural and synthetic biodegradable polymers.
- can define what is biodegradation and how it is measured.
- can describe the synthesis methods of synthetic biodegradable polymers.
- knows the application areas and particular requirements of biodegradable polymers.

Text Sources

<u>Primary source material:</u> Research and review articles dealing with "biopolymers" as well as book chapters, all provided as PDF files

<u>MyCourses online system</u>: Above material and all lecture slides will be available online for students during the period of their enrollment.

Online tools

- Zoom: for lectures
- **MyCourses:** contains lecture slides, reading materials, assignments and announcements
- **Padlet:** online canvas to write your reading summaries

Class arrangements

• All lectures are via Zoom:

https://aalto.zoom.us/j/65287418944?pwd=NndKNXZmK0w5YUI5Un YybINaQmNNZz09

- Attendance is necessary since all lectures require your active participation in the discussion parts
- Please read the material provided before each lecture; you will find it in MyCourses:

https://mycourses.aalto.fi/mod/folder/view.php?id=1138023

Class arrangements

Lecture style:

- Each unit will consist of a lecture part and a discussion part.
- During the discussion part, you are assigned to breakout rooms to discuss the reading assignment within your group. Turn on your camera in the breakout rooms!
- Together, you should write a short summary of the topic using Padlet: <u>https://padlet.com/michaelhummel/CHEME2155_2024</u>

Class arrangements

Group discussion:

- You will remain in the same group of 5 throughout the course
- You will peer-grade your participation in the discussion
- If you would like to be in the same group with certain students, please send me an email until Wednesday Jan 10th and I will try to take your wishes into account when forming the groups
- Also, indicate if you would prefer to be in a group that meets physically
- You will then get a spreadsheet to grade you peers anonymously

Assignments - mandatory

	Due date
Assignment 1	January 22 nd 23:59
Assignment 2	February 12 th 23:59
Assignment 3	March 11 th 23:59

Schedule

Day	Subject of lecture	Discussion part
08 January	Introduction to the course	
15 January	Biopolymers overview	Reading 1
22 January	Biopolymers for packaging	Reading 2
29 January	Discussion day*	Reading 3 & Assignment 1
05 February	Biodegradation 1	Reading 4
12 February	Biodegradation 2	Reading 5
26 February	Discussion day*	Reading 6 & Assignment 2
04 March	Chitin, alginates and others	Reading 7
12 March	Proteins	Reading 8
19 March	Discussion day*	Reading 9 & Assignment 3
25 March	TBD	Reading 10

Work load

Online lectures	20 h
Independent studying	95 h
Preparation for final assignment	20 h
	125 h = 5 cr

Final assignment

Due on 11 April, (Thu) at 23:59

Grading		
Each course assignment 20% of final grade	3 x 15% = 45%	
Padlet summaries of group Reading assignments	15%	
Peer-grading from group discussion	10%	
Final assignment	30%	

The detailed instructions for the final assignment will be provided ca. 1 month before the due date

You cannot pass the course if you fail to submit the final assignment

Introduce yourself in Padlet

- 1. Introduce yourself within the group in your breakout room
- 2. Discuss the term "Biopolymer"
- 3. Write a short introduction of your group and summarize your discussion. Paste a screenshot of your Zoom screen to capture your faces
- 4. Save your introduction as picture or pdf file
- 5. After that, go to the Padlet webpage and upload your file in the first column:

https://padlet.com/michaelhummel/CHEME2155_2024

