# Biopolymers Discussion day

### Biopolymers CHEM-E2155

Inge Schlapp-Hackl



### **Previous** lecture

#### Keratin and fibroin









Glv-Ala-Glv-Ala-Glv-Ser-Glv-Ala-Ala-Glv-(Ser-Glv-(Ala-Glv)n)8-Tvr



#### Soy protein



#### Glutens



## Schedule

A

| Day         | Subject of lecture           | Discussion part          |  |  |
|-------------|------------------------------|--------------------------|--|--|
| 08 January  | Introduction to the course   |                          |  |  |
| 15 January  | Biopolymers overview         | Reading 1                |  |  |
| 22 January  | Biopolymers for packaging    | Reading 2                |  |  |
| 29 January  | Discussion day               | Reading 3 & Assignment 1 |  |  |
| 05 February | Biodegradation 1             | Reading 4                |  |  |
| 12 February | Biodegradation 2             | Reading 5                |  |  |
| 26 February | Discussion day               | Reading 6 & Assignment 2 |  |  |
| 04 March    | Chitin, alginates and others | Reading 7                |  |  |
| 11 March    | Proteins                     | Reading 8                |  |  |
| 18 March    | Discussion day               | Reading 9 & Assignment 3 |  |  |
| 25 March    | TBD                          | Reading 10               |  |  |

## Schedule

- Analysis and discussion of Assignment 3
- Discussion of reading assignment 9



## Assignment 3 Kitchen chemistry



## **Learning Outcomes**

For the third assignment you

- developed an understanding for the reactivity and/or property changes of selected biopolymer(s) through simple chemical modification
- have developed diplomatic skills to explain the mess in your kitchen



## **Demonstrated kitchen chemistry**

- plastic starch
  - corn: 18
  - potato: 9
  - oat: 1
  - rice: 1
  - tapioca: 1
  - Banana: 1

- plastic from casein: 17
- gelatine (Jell-O shot): 6
- agar: 2
- egg white protein: 1
- paper foam: 1

#### **Message from Michael:**

It was really fun to watch your videos. Most of you did an excellent job. I hope you shared the video with your friends and family. I am sure they will enjoy your own mini biopolymers lecture!



### **Plastic from starch**



### **Amylose** 20-30%





#### Amylopectine

up to 85% branching via  $\alpha(1\rightarrow 6)$ bonds every 24 to 30 AGU

### **Plastic from starch**



Figure 2 Polymer chains have small molecules between them, which prevents them from lining up

For more info see:

Aalto University School of Chemical Engineering

https://edu.rsc.org/experiments/making-plastic-from-potato-starch/1741.article

## **Plastic from starch**

**TABLE 4.** MECHANICAL PROPERTIES OF WHEAT STARCH FILMS WITH DIFFERENT GLYCEROL CONTENTS (% W/W) AT 25C AND DIFFERENTRELATIVE HUMIDITIES\*

|                                 | RH<br>(%) | Glycerol (%)                |                              |                             |                              |                              |
|---------------------------------|-----------|-----------------------------|------------------------------|-----------------------------|------------------------------|------------------------------|
|                                 |           | 0                           | 20                           | 30                          | 40                           | 50                           |
| A                               |           |                             |                              |                             |                              |                              |
| Tensile strength (MPa)          | 11        | $23.42 \pm 0.12^{Aa}$       | $21.77 \pm 0.01^{Ab}$        | $19.25 \pm 0.48^{Ac}$       | $17.48 \pm 0.49^{\rm Ad}$    | $12.27 \pm 0.13^{Ae}$        |
|                                 | 22        | $21.43 \pm 0.25^{Ba}$       | $18.70 \pm 0.84^{Bb}$        | $17.41 \pm 0.50^{Bc}$       | $16.75 \pm 0.52^{Bc}$        | $4.77\pm0.09^{\rm Bd}$       |
|                                 | 38        | $19.52 \pm 0.23^{Ca}$       | $17.47 \pm 00.50^{Cb}$       | $16.10 \pm 0.31^{Cc}$       | $4.53 \pm 0.23^{Cd}$         | $2.87 \pm 0.16^{Ce}$         |
|                                 | 64        | $13.40 \pm 0.17^{Da}$       | $11.95 \pm 2.61^{\text{Db}}$ | $5.62 \pm 0.39^{Dc}$        | $2.05\pm0.13^{\text{ED,d}}$  | $1.85\pm0.08^{\text{Dd}}$    |
|                                 | 74        | $11.78 \pm 0.17^{Ea}$       | $9.36 \pm 0.24^{Eb}$         | $3.89 \pm 0.21^{Ec}$        | $2.20\pm0.10^{\text{Dd}}$    | $1.65 \pm 0.06^{Ee}$         |
|                                 | 84        | $10.19\pm0.20^{Fa}$         | $7.26 \pm 0.27^{Fb}$         | $3.42 \pm 0.35^{Ec}$        | $1.63 \pm 0.12^{Ed}$         | $1.49\pm0.14^{\text{Ed}}$    |
| Percent elongation at break (%) | 11        | $0.53 \pm 0.07^{Fe}$        | $1.05\pm0.57^{\rm Ed}$       | $1.89 \pm 0.23^{Fc}$        | $5.20 \pm 0.05^{Fb}$         | $5.95 \pm 0.07^{Fa}$         |
|                                 | 22        | $1.81 \pm 0.14^{\text{Ee}}$ | $3.17 \pm 0.10^{\text{Dd}}$  | $3.82 \pm 0.14^{Ec}$        | $8.32 \pm 0.16^{Eb}$         | $14.24 \pm 0.14^{Ea}$        |
|                                 | 38        | $2.15 \pm 0.30^{\text{De}}$ | $3.53 \pm 0.23^{\text{Dd}}$  | $4.61 \pm 0.06^{\text{Dc}}$ | $15.07 \pm 0.44^{\text{Db}}$ | $16.69 \pm 0.23^{Da}$        |
|                                 | 64        | $4.62 \pm 0.16^{Ce}$        | $6.75 \pm 0.13^{Cd}$         | $10.76 \pm 0.09^{Cc}$       | $16.16 \pm 0.06^{Cb}$        | $19.18 \pm 0.01^{Ca}$        |
|                                 | 74        | $5.66 \pm 0.14^{Be}$        | $7.98\pm0.08^{\rm Bd}$       | $11.85 \pm 0.05^{Bc}$       | $16.91 \pm 0.06^{\text{Bb}}$ | $21.43 \pm 0.10^{\text{Ba}}$ |
|                                 | 84        | $11.31 \pm 0.15^{Ae}$       | $12.45\pm0.63^{\rm Ad}$      | $14.16 \pm 0.07^{Ac}$       | $19.10 \pm 0.60^{Ab}$        | $21.43 \pm 0.06^{Aa}$        |



Journal of Texture Studies 2013, 44, 176-186. doi:10.1111/jtxs.12007

## Isolation of casein

- Three kinds of proteins in milk: caseins, lactalbumins, and lactoglobulins (globular proteins; complete proteins)
- Casein, the main protein in milk, is a phosphoprotein, and appears as calcium caseinate in milk
- Three similar proteins which differ primarily in molecular weight and the amount of phosphorus groups they contain:
  - $\alpha$  and  $\beta$ -casein: 25 kDa ; 9 and 4-5 phosphate groups per molecule, respectively; both insoluble in water
  - $\kappa$ -casein: 8 kDa, 1-2 phosphate groups per molecule; can solubilize  $\alpha$  and  $\beta$ -casein in water by promoting the formation of micelles.

For more info see:

alto University



ineering International Dairy Journal 2017, 73, 98-108. http://dx.doi.org/10.1016/j.idairyj.2017.05.012

## Isolation of casein

- Isoelectric point of calcium caseinate: pH 4.6 (Milk pH 6.6)
- Natural separation process occurs when milk sours; microorganisms hydrolyse lactose to form glucose and galactose; lactobacilli (bacteria strain present in milk) converts galactose into lactic acid (sour-tasting); pH drops
- Cheese production
- In 1921, the company Sarvis Oy in Tampere started to produce plastic from casein; ceased production with the rise of oil-based plastics

For more info see:



- https://www.chemistry.mcmaster.ca/~chem2o6/labmanual/expt11/2o6exp11.html
- International Dairy Journal 2017, 73, 98-108. http://dx.doi.org/10.1016/j.idairyj.2017.05.012

### Comments

#### Majority of the submissions of high quality

Chemistry behind it mostly explained very well



# **Reading 9**

Title: Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality From: Rolf Mülhaupt. *Macromol. Chem. Phys.* 2013, 214, 159–174.

- bioplastics vs. bioenergy = biocrisis
- Plastic vs. paper bag
- ...It is well known that degradation renders polymers brittle, thus accounting for their disintegration into much smaller micro- and nanoparticles ... dust-like particles are still present,...Spongy biodegradable polymers represent an attractive food source and a cozy habitat for a variety of microbes
- ...Knowing that plastics wastes are biodegradable may open the door to unrestrained littering of all kinds of nondegradable wastes.
- ...Today, bio-based monomers are used to render conventional plastics like PET and polyolefins renewable and green...



## **Reading 9 discussion**

**Title:** Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality **From: Rolf Mülhaupt.** *Macromol. Chem. Phys.* 2013, 214, 159–174.

#### **Discussion items:**

 How do you see the future of biopolymers? What are the biggest obstacles that biopolymers still need to overcome to be more viable substitutes for oil-based plastics.

#### **Instructions:**

Upload your names and summary of your discussion to the Padlet page: <a href="https://padlet.com/michaelhummel/CHEME2155\_2024">https://padlet.com/michaelhummel/CHEME2155\_2024</a>

