
Lecture 1: Cryptographic Hash-Functions
Christopher Brzuska

January 8, 2024

1 Course Overview
Prerequisits. This course assumes that per default, you have taken CS-E4340
Cryptography. If you haven’t, please contact Chris or Kirthi as soon as possible
and we will help you with additional background. If you have a good level of
mathematical maturity, following this course should also be possible without
having taken CS-E4340. In this case, however, we recommend the foundations
track (which, indeed, these lecture notes belong to), since starting out in a field
by directly reading research articles is not recommended.

1.1 Recap of CS-E4340 Cryptography
& overview over teaching period IV

In teaching period I, we defined one-way functions (easy to compute, hard
to invert), pseudorandom generators (a deterministic function that takes a
truly random string and expands it into a longer, pseudorandom string) and
pseudorandom functions (functions with a secret key whose input-output be-
haviour is indistinguishable from the behaviour of a truly random function).
See Chapter 3 in the crypto companion https://cryptocompanion.github.
io/cryptocompanion/cryptocompanion.pdf for the formal definitions.
We showed that from one-way functions (OWFs), one can build pseudorandom
generators (PRGs). And from pseudorandom generators, we can build pseudo-
random functions (PRFs). We skipped some of the very interesting and exciting
proofs in this domain and will cover them in teaching period IV of this course.
Specifically, in teaching period IV we will see

(1) a proof of the Goldreich-Levin hardcore bit. This proof has very nice
amplification techniques.

(2) construction and proof (sketch) for how to build PRGs from OWFs (The
Goldreich-Levin hardcore bit alone plus a one-way permutation already
yields a PRG, but this approach does not work for general one-way func-
tions (which are not necessarily bijective). This proof uses intricate way of
generating pseudorandomness from one-wayness, going via pseudo-pseudo-
entropy, a notion which we will introduce in this context.

(3) construction and proof for building a PRG with arbitrary output from a
PRG with a single output. This proof introduces the hybrid argument,
which is useful in many places in cryptography.

1

https://cryptocompanion.github.io/cryptocompanion/cryptocompanion.pdf
https://cryptocompanion.github.io/cryptocompanion/cryptocompanion.pdf

Advanced topics in cryptography Lecture 1: Cryptographic Hash-Functions

(4) a proof of the PRF from PRG construction by Goldreich-Goldwasser-
Micali, which is essentially a proof by a hybrid argument along a tree.
The technique is very useful. Interestingly, here, the reduction needs to
depend on the number of queries that the adversary makes.

(5) further amplification proofs for different types of one-wayness. We defined
one-wayness in a certain way (see Chapter 3 of the crypto companion),
but there are many ways to define one-wayness and it’s interesting how
to transform one version of one-wayness into another. (This part is only
included if there is time left.)

We have already uploaded some of the exercises sheets and lectures. You can
already watch the lectures and solve the exercises if you like, fitting your own
schedule rather than wait until period IV officially starts.
After OWFs, PRGs and PRFs, in teaching period I, we showed how to build
confidential symmetric encryption schemes (ENC) and unforgeable message au-
thentication codes (MAC) from PRFs, and discussed briefly that “essentially
everything” in (computational) cryptography implies one-way functions, and
thus, all primitives (OWFs, PRGs, PRFs, MAC, and ENC) are existentially
equivalent—if one of them exists, all the others exist, too. We call the world
where one-way functions and all its equivalent primitives exist MiniCrypt.

MiniCrypt:
∃OWF⇔ ∃PRG⇔ ∃PRF⇔ ∃MAC⇔ ∃ENC

We introduced reduction proofs which is a technique to show implications be-
tween cryptographic primitives (essentially proofs by contradiction which show
that if there is an adversary against one primitive, then one can turn it into an
adversary against another primitive). And since one-way functions imply that
NP is different from P, we cannot hope to show, unconditionally that any of
these cryptographic primitives exist. Thus, we need to content ourselves with
trying to make as reasoneable assumptions as possible and build our systems
based on these.
In teaching period II, we then turned to stronger primitives such as public-key
encryption (PKE). As it turns out, PKE is actually very hard to build from a
one-way function in a black-box way, and we will see in this course how to prove
this separation result.

1.2 Content of teaching period III
Cryptographic hash-functions. We only covered cryptographic hash-functions
very briefly in the CS-E4340 Cryptography course with simplified definitions
and did not go into depth, and I now want to explain why. Namely, collision-
resistant hash-functions are not known to be implied by one-way functions and
are incomparable to public-key encryption, i.e., neither implied by public-key
encryption nor do collision-resistant hash-functions imply public-key cryptogra-
phy. So, they don’t fit into a nice “hierarchical” view cryptographic primitives.
A second reason is that one of the very common applications of hash-functions,
password hashing does not seem to be cryptographically interesting—since when
hashing low-entropy values, not much hardness is to be expected.

2

Advanced topics in cryptography Lecture 1: Cryptographic Hash-Functions

In fact, I think that both of these items make cryptographic hash-functions a
very interesting topic for the advanced cryptography course, because the rela-
tion between cryptographic hash-functions and other cryptographic primitives
is messy, and password hashing illustrates the limits of the cryptographic ap-
proach very nicely. We’ll discuss both of these issues more in depth in this
lecture, both, the messy relation and the issues with password hashing. But
before moving to an overview over today’s lecture, I’d like to briefly discuss a
second type of hash-functions which we’ll discuss in teaching period III.

Complexity-theoretic hash-functions. The term hash-function is certainly
overloaded across the field of computer science. E.g., hash-functions are used
to determine storage indices in tables. In this application, it is important that
collisions are rare (for efficiency), but one does not need to prevent collisions
under all circumstances and thus does not neccessarily use cryptographic hash-
functions, but can also use simpler hash-functions with nice combinatorical prop-
erties. Similarly, when one has some input key material with high entropy1 (e.g.,
key stroke rhythm, light, noise, biometric data...), but such that it has structure
and is not a uniformly random string, then one would like to extract the ran-
domness of the long high-entropy material into a shorter (but still long enough)
uniformly random key. These co-called randomness extractors are colloquially
also referred to as hash-function. We will see that one can build randomness ex-
tractors unconditionally, i.e., without the need to assume cryptographic one-way
functions.

2 Definitions for cryptographic hash-functions
We now turn to the topic of this lecture and, indeed, the first couple of lectures of
this course, namely cryptographic hash-functions and their security properties.

2.1 Syntax
A (cryptographic) hash-function h is such that it maps strings of arbitrary length
to a string of fixed length. In practice, e.g., Sha-256 always returns a 256-bit
output. In this course, we want to continue to live in a “polynomial world”,
i.e., a world, where we have a security parameter and security holds against
polynomial-time adversaries. Therefore, we for each natural number (a.k.a.
security parameter) λ ∈ N, there needs to be a hash-function. Instead of defining
infinitely many hash-functions (i.e., one per λ ∈ N), we simply give a second
input s to the hash-function, known as salt and we’ll require that no matter
which input x is chosen, the length of h(s, x) is equal to the length of the salt s.
Since hash-functions are compressing, many values map to the same value (by
pigeonhole principle), i.e., a hash-function cannot be injective2.

Definition 2.1 (Syntax of a cryptographic hash function). A cryptographic
hash-function h is a (deterministic) polynomial-time computable function h :
{0, 1}∗ ×{0, 1}∗ → {0, 1}∗ such that for all (s, x) ∈ {0, 1}∗ ×{0, 1}∗, |h(s, x)| =

1We do not assume that you are familiar with entropy, we’ll discuss this concept more in
detail later in this course.

2A function f is called injective if for all distinct inputs x 6= x′, we have that the output
is distinct, too, i.e., f(x) 6= f(x′).

3

Advanced topics in cryptography Lecture 1: Cryptographic Hash-Functions

|s|. We sometimes use the terms hash-function and cryptographic hash-function
interchangeably (if it’s clear from context).

Remark. The length of the salt acts as the security parameter and thus de-
termines the output length (the second input has arbitrary length). One can
consider more general definitions of hash-function syntax where salt length and
output length are functions of the security parameter, but the above definition
is convenient to work with.

2.2 Security Properties and examples
Password hashing: Practice vs. theory. The salt of a cryptographic hash-
function has multiple purposes. As discussed above, its length is the security
parameter. Moreover, when using different salts s 6= s′, then the function h(s, ·)
and h(s′, ·) might behave very differently. In practice, hashes of passwords are
often stored by servers to check passwords when a user logs in. Here, the
user provides their password, the server hashes it and checks whether the hash
output is equal to the one stored in the database. The idea of storing hash-
values (rather than passwords) on the server-side is that a compromise of the
server database does not compromise all users’ passwords, but instead only leaks
their hash-values. However, since passwords often have low entropy (we’ll define
entropy formally later. Concretely, low entropy implies that most passwords are
chosen from some small set), knowing the hash-value suffices to run a brute-force
attack, since an attacker can just go through all likely passwords, hash them and
then check for equality. If the server uses the same salt for all users, then the
attacker can sort the hash-values in the database lexicographically and compute
the hash value of all likely passwords (with the fixed salt) and match the outputs
with the database, simultaneously breaking all passwords. In turn, if the server
uses a different salt for each user, then this brute-force attack needs to compute
the hash-values of likely passwords separately for each user. Thus, if the server
hashes each user’s password with a different salt slows down the brute-force
attack by a factor of size of the database.
Practitioners tend to argue that this slow-down by a factor of the size of the
database is a practically relevant factor, and using distinct salts is thus gener-
ally recommended. From a cryptographic perspective, note the the slowdown is
merely a linear factor. This is quite a small factor compared to the usual cryp-
tographic scenario where one intends to require a superpolynomial number of
operations from an attacker to break a cryptosystem. Similarly, it is sometimes
recommended to use slow, expensive hash-functions which slow down both the
application and the attack by the same linear factor. In practice, a slowdown
factor of a 100 might be acceptable for an application and might make attacks
significantly slower, e.g., an attack which usually requires only 1 day would the
require 100 days. In turn, cryptographically, slowing down the application and
the attacker by the same factor is usually not considered a useful approach.
Thus, one can argue that password-hashing is not necessarily a cryptographic
application in the sense that the security considerations are quite different from
those usually deployed in cryptographic design. E.g., when an input to a hash-
function is chosen uniformly and of the same length as the salt, then finding a

4

Advanced topics in cryptography Lecture 1: Cryptographic Hash-Functions

pre-image of the resulting hash-value is usually exponentially hard3. The same
is true if the password is drawn from a distribution which has high entropy, i.e.,
is chosen from a distribution, where the probability of each value is at most
2−λ, where λ is the output length of the hash-function. Thus, using a crypto-
graphic hash-function in password-hashing gives full cryptographic security for
all passwords which are chosen from such a high-entropy distribution.

Security properties. The previous discussion of applications brings us to
the subject of security properties of cryptographic hash-functions. Typically,
one desires three security properties, informally described here:

(1) Pre-image resistance: Given (a random) salt s and output y, it is hard
to find x such that h(s, x) = y (provided that y was generated as h(s, z)
for z sampled from a high-entropy distribution).

(2) Second pre-image resistance: Given (a random) salt s, input x and
output y = h(s, x), it is hard to find a distinct x′ 6= x such that h(s, x′) =
h(s, x) = y.

(3) Collision-resistance: Given (a random) salt s, it is hard to find distinct
x 6= x′ such that h(s, x) = h(s, x′).

We now discuss examples and motivations for the definitions and state all formal
definitions jointly together in the end of the lecture notes for reference.

Example for pre-image resistance. Password-hashing (with high-entropy
passwords) is a good example of an application where we need pre-image-
resistance. Namely, if the hash-function is easy to invert, then even very good,
high-entropy passwords would be compromised if an adversary gets their hand
onto a hash value of the password. Thus, pre-image resistance is a property
which we require to hold whenever x is drawn from a high entropy distribution.
Thus, to be able to define pre-image resistance, we need to define entropy. In
particular, we define the so-called min-entropy of a distribution. Min-entropy
of a password distribution (or a distribution over other secrets) is a measure for
the worst password(s) which someone can choose, where the worst values are
those which are chosen often. Of course, in the password application, we do
not know the real distribution of passwords which people use, but given large
enough databases, we can approximate it well enough. If there is a password
which is chosen by 1

2 of all users, the min-entropy of the distribution is 1. If the
distribution is such that the most likely password is chosen by 1

4 of all users,
then the min-entropy of the distribution is 2 (since 4 = 22). In general, if the
distribution is such that the most likely password is chosen by 1

2k of all users,
then the min-entropy of the distribution is k. That is, min-entropy is the log
(to basis 2) of the highest probability. See Definition 2.2 for the definition of
min-entropy and Definition 2.5 for the definition of pre-image resistance.

Example for 2nd pre-image resistance. A data storage service might use
deduplication for files which are uploaded by many users such as popular music

3This statement is true by our state-of-the-art-understanding—however, we cannot prove
the exponential hardness of this task (since else, we would also prove that NP 6= P).

5

Advanced topics in cryptography Lecture 1: Cryptographic Hash-Functions

or movies. The idea, here, is that a user intends to upload a large file x, and
the storage service provider sends a salt s to the user and asks the user to send
y := h(s, x). Here, y is only a relatively short bitstring, e.g., 256 bits while x
might be several gigabyte large. The service provider then checks whether y is
equal to h(s, x′) for any file x′ which the service provider has already stored. If
no, then the x is uploaded and stored by the service provider. However, if the
service provider finds x′ such that h(s, x′) = y, the it will not ask the client the
transfer the file but instead simply assume that x′ = x. This approach saves
both, bandwidth and storage space on the provider’s side.
A possible attack on this service would be as follows: A new movie x is pub-
lished. The attacker finds a useless file x′ (or potentially some malware) which
is different from x and has the property that h(s, x) = h(s, x′). It uploads x′ to
the server. When now another user intends to upload x, then the server thinks
that x has already been stored, since h(s, x) = h(s, x′). When the other user
later intends to download back x, they will actually receive x′, breaking the
service model of the provider and potentially infecting the user’s device with
malware.
2nd pre-image resistance prevents this attack, because given x, the adversary
cannot find a second file x′ which is different from x such that h(s, x) = h(s, x′).
See Definition 2.6 for the formal definition of 2nd pre-image resistance. In this
example, the adversary has no control over the distribution of x. In turn, in
the next example, the adversary will have control also over the distribution of
x and thus, 2nd pre-image resistance does not suffice.

Examples for collision resistance. While in the previous scenario, the ad-
versary had essentially no control over x and full control over x′, in many sce-
narios, the adversary has partial control over both x and x′ or partial control
over x and full control over x′. The security model for collision resistance gives
the adversary slightly over-approximates this adversarial power by giving the
adversary full control over both x and x′, see Definition ?? for the full definition.
Domain extension: Signature schemes are often designed for fixed-length mes-
sages. Instead of signing some message x of arbitrary length, the signer can
sample a salt s and sign s||h(s, x). Now, if the adversary can find a second
message x′ such that h(s, x′) = h(s, x), then it can re-use the signature for x
also as a signature for x′.
Key exchange: Concretely, such a signature forgery can be a problem in au-
thenticated key exchange protocols which are protocols which establish a key
between two parties over an untrusted network, e.g., the Transport Layer Se-
curity protocol (TLS) establishes such keys, or devices when connecting to a
WLAN access point.
In the Diffie-Hellman key exchange protocol, one party sends a value A = ga

and the other party sends a value B = gb where g is the generator of a suitable
cyclic group and a and b are random and secret exponents, each only known
to one of the parties. Since both parties know A and Y and each party knows
either a or y, they both can compute gab. One party computes this secret as
Ba = (gb)a = gba and the other party computes this secret as Ab = (ga)b = gab.
Now, a machine-in-the-middle-attack (MITM) can replace one party’s value B
by an adversarial value B∗. Therefore, in authenticated key exchange protocols
such as TLS, one party or both parties sign the pair of shares (A, B). In this

6

Advanced topics in cryptography Lecture 1: Cryptographic Hash-Functions

case, let’s say that the server chooses B and signs (A, B) where A is the share it
received. In this case, the adversary can send its own A∗ to the server which will
sign x = (A∗, B). If the adversary now wants to sends its own value B∗ to the
client and trick the client into believing that B∗ comes from the server, then the
adversary needs to find a signature on x′ = (A, B∗). If h(s, x) = h(s, x′), then
any signature on x is valid for x′, too (as discussed above). In this example, the
adversary has partial power over both x = (A∗, B) and x′ = (A, B∗), since it
chooses A∗ and B∗.

2.3 Security Definitions
Definition 2.2 (Min-entropy). Let D be a distribution. The min-entropy of D
is defined as

H∞(D) := min
z∈Supp(D)

|log2(Pr[z = D])|,

where the probability is taken over sampling from D.

Definition 2.3 (PPT sampleable distribution). LetD be a probabilistic polyno-
mial-time (PPT) algorithm which takes as input the security parameter 1λ

and returns an output and thereby induces a distribution over bitstrings. I.e.,
(D(1λ))λ∈N induces infinitely many distributions. We call D a PPT sampleable
distribution (because PPT sampleability is an asymptotic notion).

Remark. It would be more precise to call (D(1λ))λ∈N a PPT sampleable dis-
tribution sequence or say that D induces such a PPT sampleable distribution
sequence. But I feel that this phrasing is cumbersome and thus prefer to say
that (the algorithm) D “is” “a” PPT sampleable distribution, replacing induce
by is and sequence of distributions by a distribution.

We now turn to the definition of a high-entropy distribution. There are several
meaningful choices one could make. For example, we could say that a distri-
bution is high-entropy, if every element in its support has negligible probability
of being sampled. We now require a bit more. Namely, we require that the
min-entropy is bigger than 2λ. Essentially, this ensures that h(s, .) cannot be
injective on any large fraction of the support of D which will be convenient for
implications between hash-function properties.

Definition 2.4 (High-entropy distribution). Let D be a PPT sampleable dis-
tribution. We say that D is a high min-entropy distribution if the function

H∞(D(1[.])) : N→ N
λ 7→ H∞(D(1λ))

satisfies that ∀λ : H∞(D(1[λ])) ≥ 2λ

Definition 2.5 (Pre-image resistance). A hash-function h satisfies pre-image
resistance if for all high min-entropy PPT sampleable distributions D and for
all PPT adversaries A the probability WinPRE

h,D,A(λ) :=

Prs←${0,1}λ,x←$D(1λ),y:=h(s,x)
[
(x∗)←$A(1λ, s, y) : h(s, x∗) = y

]
7

Advanced topics in cryptography Lecture 1: Cryptographic Hash-Functions

ExpPRE
h,D,A(1λ)

s←$ {0, 1}λ

x←$ D(1λ)
y ← h(s, x)

x∗ ←$A(1λ, s, y)
if h(s, x∗) = y :

return 1
return 0

Exp2PRE
h,A (1λ)

s←$ {0, 1}λ

x←$ D(1λ)
y ← h(s, x)

x′ ←$A(1λ, s, x, y)
if x′ 6= x ∧

h(s, x′) = y :
return 1

return 0

ExpCR
h,A(1λ)

s←$ {0, 1}λ

x, x′ ←$A(1λ, s)
if x′ 6= x ∧

h(s, x) = h(s, x′) :
return 1

return 0

Figure 1: Security experiments for pre-image resistance (left), 2nd pre-image
resistance (middle) and collision-resistance (right).

is negligible. Equivalently, we can also define

WinPRE
h,D,A(λ) := Pr

[
1 = ExpPRE

h,D,A(1λ)
]
,

and we use both definitions interchangeably. See Fig. 1 (left) for ExpPRE
h,D,A(1λ).

Remark. Note that one can consider the distribution D also as adversarial and
can assume that the adversary A “knows” the distribution D. Note, however,
that D and A do not share any state, i.e., the adversary A knows from which
distribution x was sampled, but does not know the random coins which D used
in the sampling process.

Definition 2.6 (2nd pre-image resistance). A hash-function h satisfies 2nd pre-
image resistance if for all high min-entropy PPT sampleable distributions D and
for all PPT adversaries A the probability Win2PRE

h,D,A(λ) :=

Prs←${0,1}λ,x←$D(1λ),y:=h(s,x)
[
(x′)←$A(1λ, s, x, y) : h(s, x′) = y ∧ x 6= x′

]
is negligible. Equivalently, we can also define

Win2PRE
h,D,A(λ) := Pr

[
1 = Exp2PRE

h,D,A(1λ)
]
,

and we use both definitions interchangeably. See Fig. 1 (middle) for Exp2PRE
h,D,A(1λ).

Definition 2.7 (Collision-resistance). A hash-function h is collision-resistant,
if for all PPT adversaries A, the probability WinCR

h,A(λ) :=

Prs←${0,1}λ

[
(x, x′)←$A(1λ, s) : h(s, x) = h(s, x′) ∧ x 6= x′

]
is negligible. Equivalently, we can also define

WinCR
h,A(λ) := Pr

[
1 = ExpCR

h,A(1λ)
]
,

and we use both definitions interchangeably. See Fig. 1 (right) for ExpCR
h,A(1λ).

8

Advanced topics in cryptography Lecture 1: Cryptographic Hash-Functions

2.4 On the insecurity of unsalted collision-resistance and
human ignorance

Sometimes, hash-functions are considered without a salt. Analogously, one can
consider a hash-function with the security parameter as a fixed salt:

h(1λ; ·) : {0, 1}∗ → {0, 1}λ

This unsalted (or “fixed-salted”) version of collision-resistance is, however, hard
to argue about. The reason is that once a single colliding pair of values is known,
the collision-resistance of the “fixed-salted” version is forever broken, although
it might be hard to use this single collision for attacks. Conceptually, one
can also observe that the security experiment does not have any randomness
anymore if the salt is fixed rather than random, and thus, the output of the
adversary can be hardcoded into the adversary. To break collision-resistance
asymptotically rather than only for a single security parameter, we need to
hardcode a collision for each security parameter. This is possible in all non-
uniform models of computation (see part 3 of the lecture video for details on
the topic). Since there are 2λ+1 strings of length λ+1 and since the function for
security parameter λ produces outputs of length λ, we only need to hardcode a
pair of strings of length λ + 1 into the adversary for each security model.
Unsalted collision-resistance is still used in some cryptographic proofs since
it is convenient to use as an assumption. Rogaway argues that such argu-
ments are still useful, since usually, a collision is not known for a hash-function
and thus, a reduction shows that if one can break the protocol, then one
has discovered something that goes beyond current human knowledge. Rog-
away refers to the assumption that collisions are unknown as human ignorance,
see https://eprint.iacr.org/2006/281.pdf for details.

9

https://eprint.iacr.org/2006/281.pdf

	Course Overview
	Recap of CS-E4340 Cryptography& overview over teaching period IV
	Content of teaching period III

	Definitions for cryptographic hash-functions
	Syntax
	Security Properties and examples
	Security Definitions
	On the insecurity of unsalted collision-resistance and human ignorance

