
LECTURE NOTES - WEEK I
Welcome to Combinatorics

Lecture Notes - Week I
Welcome to Combinatorics

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

January 8, 2024

1

LECTURE NOTES - WEEK I
Welcome to Combinatorics

CHAPTER 1
Definitions

Here are a few definitions to start the course. First, combinatorial:

• adjective

• relating to selecting a given number of elements from a larger number without regard to their
arrangement.

Now optimization (or optimization, whichever spelling is your favourite):

• noun

• the action of making the best or most effective use of a situation or resource.

As any part of optimization, it can be achieved by either analyzing/Visualizing properties of functions /
extreme points or by applying numerical methods. Finally, optimization has important applications in fields
such as economics, statistics, bioinformatics, machine learning, and artificial intelligence.

CHAPTER 1. DEFINITIONS 2

LECTURE NOTES - WEEK I
Welcome to Combinatorics

CHAPTER 2
Mathematical programming and

optimization

In this course, optimization is viewed as the core element of mathematical programming, which is a central
OR modelling paradigm. It can be simply defined using three major concepts: variables, domain and
functions.

Variables correspond to decisions/points of interest (business decisions, parameter definitions, settings,
geometries, among others). In our formulations, it will be the values where changes will be applied, and the
goal is to find the best values, according to each particular problem. Limiting which values each variable
can assume, the domain which represents constraints and limitations (such as logic, design, engineering,
etc.). Objective functions (which represent performance and quality measurements) are used to evaluate
which variable has the best value, considering the limitations present in the constraints.

However, mathematical programming has many applications in fields other than OR, which causes some
confusion. In this course, we will study mathematical programming in its most general form: both constraints
and objectives are nonlinear functions.

CHAPTER 2. MATHEMATICAL PROGRAMMING AND OPTIMIZATION 3

LECTURE NOTES - WEEK I
Welcome to Combinatorics

CHAPTER 3
Types of mathematical optimization

models

As in any field of optimization, the following rule of thumb is always valid:

The simpler are the assumptions which define a type of problem, the better are the methods to
solve such problems.

For this course (and optimization in general), the following notations are useful:

• x ∈ Rn: vector of (decision) variables xj , j = 1, . . . , n;

• f : Rn → R ∪ {±∞} - objective function;

• X ⊆ Rn: ground set (physical constraints);

• gi , hi : Rn → R: constraint functions;

• gi(x) ≤ 0 for i = 1, . . . ,m : inequality constraints;

• hi(x) = 0 for i = 1, . . . , l : equality constraints.

Our goal will be to solve variations of the general problem P:

(P) : min f (x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X .

Which applies to any sub-field of optimization:

• Linear programming (LP): linear f (x) = c⊤x with c ∈ Rn; constraint functions gi(x) and hi(x) are
affine (a⊤i x − bi , with ai ∈ Rn, b ∈ R); X = {x ∈ Rn : xj ≥ 0, j = 1, . . . , n}.

• Nonlinear programming (NLP): some (or all) of the functions f , gi or hi are nonlinear;

• (Mixed-)integer programming ((M)IP): LP where (some of the) variables are binary (or integer).
X ⊆ Rk × {0, 1}n−k

• Mixed-integer nonlinearprogramming(MINLP): MIP+NLP.

In this course, we might face any of the previous sub-field, but the major change is that variables can be
discretized (binary or integer).

CHAPTER 3. TYPES OF MATHEMATICAL OPTIMIZATION MODELS 4

LECTURE NOTES - WEEK I
Welcome to Combinatorics

CHAPTER 4
Graphs

Some useful definitions for this course are:

• graph G = (V ,E ,ψ): a powerful tool used in discrete mathematics and graph theory, where
objects are represented in the form of ”relation”;

• undirected graph are sub-categories of graphs where the direction of interaction does not matter.

– vertices V (or nodes and points);

– edges E (or links, arcs and line);

– function ψ : E → {X ⊆ V : |X | = 2}

• directed (where the edge direction is crucial) graph G = (V ,E ,ψ)

– vertices V

– edges E

– function ψ : E → {(v ,w) ∈ V × V : v ̸= w}

• Edges e can have a value associated with it: → w −→ fuv called weight or flow;

• in practice: e = {u, v}, e = (u, v) respectively, G = (V ,E)

Remark: E can contain multiple parallel edges.

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

e1

e2
e3

e4e5

e6

e1

e2
e3

e4e5

e6

CHAPTER 4. GRAPHS 5

LECTURE NOTES - WEEK I
Welcome to Combinatorics

Several structures can be extracted from graphs, especially based on edge progression. ConsideringW in
G from u1 to uk+1, as an edge progression with the following progression:

• sequence [u1, a1, u2, . . . , uk , ak , uk+1] with k ≥ 0

• ai = {ui , ui+1} ∈ E(G)

• e.g. [v3, e3, v2, e2, v1, e1, v2, e3, v3, e4, v4]

Generally, walks encompasses any edge progression. It can be separated in closed and open walks. For
the former, a walk is considered an open walk if the starting and ending nodes are different, i.e. the starting
node and the finishing are different. At the same time, the latter is a closed walk if the starting and ending
nodes are identical, i.e. if a walk starts and ends at the same node, then it is said to be a closed walk.

• edge progression with ai ̸= aj , 1 ≤ i < j ≤ k

• e.g. [v2, e2, v1, e1, v2, e3, v3, e4, v4]

However, it can be decomposed into smaller definitions:

• trail: an open walk in which no edge is repeated;

• circuit: closed trail;

• cycle: same starting and ending node.

Another case is a path, which is a walk with no repeating nodes. For a path P in G from u1 to uk+1,
u1 − uk+1 path:

• graph ({u1, . . . , uk+1}, {a1, . . . , ak}) with [u1, a1, u2, . . . , uk , ak , uk+1] walk and ui ̸= uj , 1 ≤ i < j ≤
k + 1

• e.g. [v1, e1, v2, e3, v3, e4, v4]

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

v1

v2 v3

v4

e1

e2
e3

e4

v1

v2 v3

v4

e1

e2
e3

e4

v1

v2 v3

v4

e1

e3

e4

Finally, reachability is a concept in which v is reachable from u if there is a u − v path in G and a graph is
connected if there is a u − v path in G for all u, v ∈ V (G).

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

CHAPTER 4. GRAPHS 6

LECTURE NOTES - WEEK I
Welcome to Combinatorics

CHAPTER 5
Algorithms

For testing connective, the more straightforward approach is a visual representation is available, such as,
for example:

v1

v2 v3

v4

v5 v6

e1
e2

e3

e4e5

e6

If visual tools are not available, there are a few usual computational representations:

incidence matrix adjacency matrix adjacency list

A ∈ {0, 1}|V |×|E |, A ∈ Z|V |×|V |, L = [ℓ(v) : v ∈ V],

av ,e =

{
1, if v ∈ e

0, if v /∈ e
av ,w = |{e = {v ,w} ∈ E}| ℓ(v) = [e : e = {u, v} ∈ E]

1 1 0 0 0 0
1 1 1 0 1 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1

0 2 0 0 0 0
2 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

ℓ(v1) = [e1, e2]

ℓ(v2) = [e1, e2, e3, e5]
ℓ(v3) = [e3, e4]
ℓ(v4) = [e4, e5]
ℓ(v5) = [e6]
ℓ(v6) = [e6]

O(|V ||E |) O(|V |2) O(|E | log |V |)

The easiest algorithm to verify connectivity is via DFS (Depth First Search):

CHAPTER 5. ALGORITHMS 7

LECTURE NOTES - WEEK I
Welcome to Combinatorics

Algorithm: DEPTH FIRST SEARCH (DFS)
Input: undirected graph G, vertex s ∈ V (G)
Output: tree (R,T) ⊆ G, R reachable from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R,T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \ R with {v ,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w}, T := T ∪ {{v ,w}}, go to 2;

v1

v2 v3

v4

v5 v6

e1
e2

e3

e4e5

e6

Q R

v2

T

v2

v1

e1

v1

v4

e5v4

v3

e4v3

The concept of the algorithm is as follows:

• suppose w ∈ V (G) \ R is reachable from s

⇒ P is s − w path with {x , y} ∈ E(P), x ∈ R, y ∈ V (G) \ R

⇒ x is added to Q in line 7

⇒ Algorithm does not stop before x is removed from Q (line 6)

⇒ there is no w ∈ V (G) \ R with {v ,w} ∈ E(G) E

In terms of runtime, for each node, the incident edges are considered; therefore, the runtime depends on
the storage of graphs. If adjacency lists are used, the runtime is O(m) = O(|E(G)|).

Analogous to DFS, there is also BFS (Breadth First Search) with the following algorithm:

Algorithm: BREADTH FIRST SEARCH (BFS)
Input: undirected graph G, vertex s ∈ V (G)
Output: tree T) ⊆ G

1 set Q := {s} and T = {s};
2 while Q ̸= ∅ do
3 v := first vertex in Q
4 set Q := Q \ {v}
5 while v has a neighbour not in T do
6 w := first neightbour of v not in T
7 set Q := Q ∪ {w}
8 set T := T ∪ {{v ,w}}

CHAPTER 5. ALGORITHMS 8

	Definitions
	Mathematical programming and optimization
	Types of mathematical optimization models
	Graphs
	Algorithms

