Lecture I - Welcome to Combinatorics

¹ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

January 8, 2024

Aalto University

Aalto University

Combinatorial Optimization

Definition

Mathematical programming and optimisation

Types of mathematical optimisation models

Course Structure

Graphs

Definitions

adjective

Combinatorial:

Definition

 relating to the selection of a given number of elements from a larger number without regard to their arrangement.

Optimization (or Optimisation):

- ٠ noun
- the action of making the best or most effective use of a situation or resource.

Combinatorial Optimization

Definition

Can be achieved by:

- Analysing/Visualizing properties of functions / extreme points or
- Applying numerical methods

Optimisation has important applications in fields such as

- operations research (OR);
- economics;
- statistics;
- bioinformatics;
- machine learning and artificial intelligence.

Combinatorial Optimization

Definition

Mathematical programming and optimisation

Types of mathematical optimisation models

Course Structure

In this course, optimisation is viewed as the core element of mathematical programming.

Math. programming is a central OR modelling paradigm:

- variables → decisions/point of interest: business decisions, parameter definitions, settings, geometries, ...;
- domain \rightarrow constraints/limitations: logic, design, engineering, ...;
- function \rightarrow objective function/profit: measurement of (decision) quality.

However, math. programming has many applications in fields other than OR, which causes some confusion;

We will study math. programming in its most general form: both constraints and objectives can nonlinear or linearfunctions, but the domain is discrete.

Combinatorial Optimization

Definitions

Mathematical programming and optimisation

Types of mathematical optimisation models

Course Structure

Types of programming

Rule of Thumb:

The simpler are the assumptions which define a type of problems, the better are the methods to solve such problems.

Some useful notation:

- $x \in \mathbb{R}^n$: vector of (decision) variables x_j , j = 1, ..., n;
- $f: \mathbb{R}^n \to \mathbb{R} \cup \{\pm \infty\}$ objective function;
- $X \subseteq \mathbb{R}^n$: ground set (physical constraints);
- $g_i, h_i : \mathbb{R}^n \to \mathbb{R}$: constraint functions;
- $g_i(x) \leq 0$ for $i = 1, \ldots, m$: inequality constraints;
- $h_i(x) = 0$ for i = 1, ..., l: equality constraints.

Combinatorial Optimization

Definitions

Mathematical programming and optimisation

Types of mathematical optimisation models

Course Structure

Types of programming

Our goal will be to solve variations of the general problem P:

- $\begin{array}{ll} (P): & \min \ f(x) \\ & \texttt{s.t.} \ g_i(x) \leq 0, i=1,\ldots,m \\ & h_i(x)=0, i=1,\ldots,l \end{array}$
- Linear programming (LP): linear $f(x) = c^{\top}x$ with $c \in \mathbb{R}^n$; constraint functions $g_i(x)$ and $h_i(x)$ are affine $(a_i^{\top}x b_i)$, with $a_i \in \mathbb{R}^n$, $b \in \mathbb{R}$); $X = \{x \in \mathbb{R}^n : x_j \ge 0, j = 1, ..., n\}.$
- Nonlinear programming (NLP): some (or all) of the functions f, g_i or h_i are nonlinear;
- (Mixed-)integer programming ((M)IP): LP where (some of the) variables are binary (or integer). $X \subseteq \mathbb{R}^k \times \{0,1\}^{n-k}$
- Mixed-integer nonlinear programming (MINLP): MIP+NLP.

Combinatorial Optimization

Definitions

Mathematical programming and optimisation

Types of mathematical optimisation models

Course Structure

Aalto University

Combinatorial Optimization

Definitions

Mathematical programming and optimisation

Types of mathematical optimisation model

Course Structure

Graphs

Course Structure

Structure

- Classes: Lecture and Exercise Session
 - \rightarrow attendance is not mandatory;
 - \rightarrow attendance is mandatory in Guest Lecture;
- Materials: Lectures Notes and Slides
 → available on "MyCourse";

Combinatorial Optimization

Definitions

Mathematical programming and optimisation

Types of mathematical optimisation models

Course Structure

1 project (group or individual): 60%;
 → based on course problems;

- 3 assignments (individual): 45% (15 each). \longrightarrow unique problem.
- Guest Lecture.

Mixture of modelling, analytical mathematics and programming.

Programming Language: Python and Julia

Assessment

Combinatorial Optimization

Definitions

Mathematical programming and optimisation

Types of mathematical optimisation models

Course Structure

Aalto University

Combinatorial Optimization

Definitions

Mathematical programming and optimisation

Types of mathematical optimisation model:

Course Structure

Graphs

Graphs

Combinatorial Optimization

▲□▶

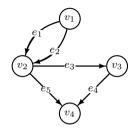
▲■▶

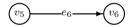
▲■▶

● 11/20

Simple definitions I

- (undirected) graph $G = (V, E, \Psi)$
 - vertices V
 - edges E
 - function $\Psi \colon E \to \{X \subseteq V \colon |X| = 2\}$
- directed graph $G=(V,E,\Psi)$
 - vertices V
 - edges E
 - function $\Psi \colon E \to \{(v,w) \in V \times V \colon v \neq w\}$
- Edges e can have a value associated to it: $\rightarrow w \longrightarrow f_{uv}$ called weight or flow;
- in practice: $e = \{u, v\}$, e = (u, v)respectively, G = (V, E) $\mathfrak{C} E$ can contain multiple parallel edges





Combinatorial Optimization

Definitions

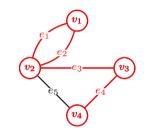
Mathematical programming and optimisation

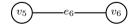
Types of mathematical optimisation models

Course Structure

Simple definitions II

- edge progression W in G from u_1 to u_{k+1} :
 - sequence $[u_1, a_1, u_2, \ldots, u_k, a_k, u_{k+1}]$ with $k \ge 0$
 - $a_i = \{u_i, u_{i+1}\} \in E(G)$
 - e.g. $[v_3, e_3, v_2, e_2, v_1, e_1, v_2, e_3, v_3, e_4, v_4]$
- walk W in G from u_1 to u_{k+1} :
 - edge progression with $a_i \neq a_j$, $1 \leq i < j \leq k$
 - e.g. $[v_2, e_2, v_1, e_1, v_2, e_3, v_3, e_4, v_4]$
- path P in G from u_1 to u_{k+1} , $u_1 u_{k+1}$ path:
 - graph $(\{u_1, \ldots, u_{k+1}\}, \{a_1, \ldots, a_k\})$ with $[u_1, a_1, u_2, \ldots, u_k, a_k, u_{k+1}]$ walk and $u_i \neq u_j$, $1 \leq i < j \leq k+1$
 - e.g. $[v_1, e_1, v_2, e_3, v_3, e_4, v_4]$





Combinatorial Optimization

Definitions

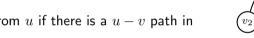
Mathematical programming and optimisation

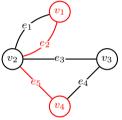
Types of mathematical optimisation model:

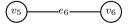
Course Structure

Simple definitions III

- v reachable from u if there is a u v path in G
- connected iff there is a u v path in G for all $u, v \in V(G)$







Combinatorial Optimization

Definitions

Testing connectivity

- $\bullet\,$ decide if G is connected
- obvious if we have a graphical representation
- not so obvious if we only have sets V = V(G), E = E(G)

	,		
incidence matrix	adjacency matrix	adjacency list	e_1 v_1
$A \in \{0,1\}^{ V \times E },$	$A \in \mathbb{Z}^{ V \times V },$	$L = [\ell(v) \colon v \in V], (v \in V]$	$e_2 e_2 e_3 v_3$
$a_{v,e} = \begin{cases} 1, & \text{if } v \in e \\ 0, & \text{if } v \notin e \end{cases}$	$a_{v,w} = \{e = \{v,w\} \in E\} $	· · · · · · · · · · · · · · · · · · ·	
$\begin{pmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 2 & 0 & 0 & 0 & 0 \\ 2 & 0 & 1 & 1 & 0 & 0 \end{pmatrix}$	$\ell(v_1) = [e_1, e_2] \ \ell(v_2) = [e_1, e_2, e_3, e_5]$	v_4
$\begin{bmatrix} 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 2 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$	$\ell(v_3) = [e_3, e_4] \\ \ell(v_4) = [e_4, e_5] $	$5 - e_6 - v_6$
$\left(\begin{array}{cccccccccc} 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{array}\right)$	$\begin{pmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$	$\ell(v_5) = [e_6] \\ \ell(v_6) = [e_6]$	
O(V E)	$O(V ^2)$	$O(E \log V)$	

Combinatorial Optimization

Testing connectivity - An algorithm

Algorithm:	Depth	First	Search
(DFS)			

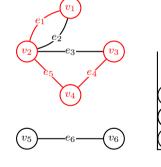
- **Input:** undirected graph G, vertex $s \in V(G)$
- **Output:** tree $(R,T) \subseteq G$, R reachable from s

$$\mathfrak{l} \hspace{0.1 in} \mathsf{set} \hspace{0.1 in} R := \{s\}, \hspace{0.1 in} Q := \{s\} \hspace{0.1 in} \mathsf{and} \hspace{0.1 in} T = \emptyset;$$

- 2 if $Q = \emptyset$ then return R, T;
- 3 else v := last vertex added to <math>Q;
- 4 choose $w \in V(G) \setminus R$ with $\{v,w\} \in E(G);$
- 5 if there is no such w then
- 6 $\ \ \$ set $Q:=Q\setminus\{v\}$ and **go to** 2

7 set
$$R := R \cup \{w\}, Q := Q \cup \{w\},$$

 $T := T \cup \{\{v, w\}\},$ go to 2;



Combinatorial Optimization

 v_3

 v_4

 v_1

 e_4

 e_5

 v_3

 v_4

Correctness

Combinatorial Optimization

- Algorithm: DEPTH FIRST SEARCH (DFS) Input: undirected graph G, vertex $s \in V(G)$
- **Output:** tree $(R,T) \subseteq G$, R reachable from s
- 1 set $R := \{s\}$, $Q := \{s\}$ and $T = \emptyset$;
- 2 if $Q = \emptyset$ then return R, T;
- 3 else v := last vertex added to Q;
- 4 choose $w \in V(G) \setminus R$ with $\{v, w\} \in E(G)$;
- ${\bf 5}~{\bf if}~{\it there}~{\it is}~{\it no}~{\it such}~w$ then
- 6 $\ \$ set $Q := Q \setminus \{v\}$ and **go to** 2

7 set
$$R := R \cup \{w\}, Q := Q \cup \{w\},$$

 $T := T \cup \{\{v, w\}\},$ go to 2;

Idea

- suppose $w \in V(G) \setminus R$ is reachable from s
- $\Rightarrow \ P \text{ is } s w \text{ path with} \\ \{x, y\} \in E(P), \ x \in R, \\ y \in V(G) \setminus R$
- $\Rightarrow x$ is added to Q in line 7
- $\Rightarrow Algorithm does not stop before$ x is removed from Q (line 6)
- $\Rightarrow \text{ there is no } w \in V(G) \setminus R \text{ with } \\ \{v, w\} \in E(G) \text{ {\it f}}$

Running time

Combinatorial Optimization

Algorithm: DEPTH FIRST SEARCH (DFS) **Input:** undirected graph G, vertex $s \in V(G)$ **Output:** tree $(R, T) \subseteq G$, R reachable from s **1** set $R := \{s\}, Q := \{s\}$ and $T = \emptyset$; 2 if $Q = \emptyset$ then return R, T: 3 else v := last vertex added to Q; 4 choose $w \in V(G) \setminus R$ with $\{v, w\} \in E(G)$: 5 if there is no such w then 6 set $Q := Q \setminus \{v\}$ and go to 2 7 set $R := R \cup \{w\}, Q := Q \cup \{w\},$ $T := T \cup \{\{v, w\}\}, \text{ go to } 2;$

- for each node the incident edges are considered
- runtime depends on the storage of graph
- if adjacency lists are used, the runtime is O(m) = O(|E(G)|)

5

7

8

Combinatorial Optimization

```
Algorithm: BREADTH FIRST SEARCH (BFS)
```

```
Input: undirected graph G, vertex s \in V(G)
  Output: tree T \subset G
1 set Q := \{s\} and T = \{s\}:
2 while Q \neq \emptyset do
      v := first vertex in Q
3
     set Q := Q \setminus \{v\}
4
      while v has a neighbour not in T do
          w := first neightbour of v not in T
6
          set Q := Q \cup \{w\}
          set T := T \cup \{\{v, w\}\}
```


Combinatorial Optimization

