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Definition

Combinatorial:

• adjective

• relating to the selection of a given number of elements from a larger number
without regard to their arrangement.

Optimization (or Optimisation):

• noun

• the action of making the best or most effective use of a situation or
resource.

– Combinatorial Optimization 3/20



Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Definition

Can be achieved by:

• Analysing/Visualizing properties of functions / extreme points or

• Applying numerical methods

Optimisation has important applications in fields such as

• operations research (OR);

• economics;

• statistics;

• bioinformatics;

• machine learning and artificial intelligence.
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What is optimisation?

In this course, optimisation is viewed as the core element of mathematical
programming.
Math. programming is a central OR modelling paradigm:

• variables → decisions/point of interest: business decisions, parameter
definitions, settings, geometries, ...;

• domain → constraints/limitations: logic, design, engineering, ...;

• function → objective function/profit: measurement of (decision) quality.

However, math. programming has many applications in fields other than OR, which
causes some confusion;
We will study math. programming in its most general form: both constraints and
objectives can nonlinear or linearfunctions, but the domain is discrete.
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Types of programming

Rule of Thumb:

The simpler are the assumptions which define a type of problems, the better
are the methods to solve such problems.

Some useful notation:

• x ∈ Rn: vector of (decision) variables xj , j = 1, . . . ,n;

• f : Rn → R ∪ {±∞} - objective function;

• X ⊆ Rn: ground set (physical constraints);

• gi,hi : Rn → R: constraint functions;
• gi(x) ≤ 0 for i = 1, . . . ,m : inequality constraints;

• hi(x) = 0 for i = 1, . . . , l : equality constraints.
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Our goal will be to solve variations of the general problem P :

(P ) : min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X.
• Linear programming (LP): linear f(x) = c⊤x with c ∈ Rn; constraint

functions gi(x) and hi(x) are affine (a⊤i x− bi, with ai ∈ Rn, b ∈ R);
X = {x ∈ Rn : xj ≥ 0, j = 1, . . . ,n}.

• Nonlinear programming (NLP): some (or all) of the functions f , gi or hi are
nonlinear;

• (Mixed-)integer programming ((M)IP): LP where (some of the) variables
are binary (or integer). X ⊆ Rk × {0, 1}n−k

• Mixed-integer nonlinear programming (MINLP): MIP+NLP.
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Structure

• Classes: Lecture and Exercise Session
→ attendance is not mandatory;
→ attendance is mandatory in Guest Lecture;

• Materials: Lectures Notes and Slides
→ available on ”MyCourse”;
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Assessment

• 1 project (group or individual): 60%;
−→ based on course problems;

• 3 assignments (individual): 45% (15 each).
−→ unique problem.

• Guest Lecture.

Mixture of modelling, analytical mathematics and programming.

Programming Language: Python and Julia
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Simple definitions I

• (undirected) graph G = (V ,E, Ψ)
• vertices V
• edges E
• function Ψ: E → {X ⊆ V : |X| = 2}

• directed graph G = (V ,E, Ψ)
• vertices V
• edges E
• function Ψ: E → {(v,w) ∈ V × V : v ̸= w}

• Edges e can have a value associated to it:
→ w −→ fuv
called weight or flow;

• in practice: e = {u, v}, e = (u, v)
respectively, G = (V ,E)
N E can contain multiple parallel edges
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Simple definitions II

• edge progression W in G from u1 to uk+1:
• sequence [u1, a1,u2, . . . ,uk, ak,uk+1] with k ≥ 0
• ai = {ui,ui+1} ∈ E(G)
• e.g. [v3, e3, v2, e2, v1, e1, v2, e3, v3, e4, v4]

• walk W in G from u1 to uk+1:
• edge progression with ai ̸= aj , 1 ≤ i < j ≤ k
• e.g. [v2, e2, v1, e1, v2, e3, v3, e4, v4]

• path P in G from u1 to uk+1, u1 − uk+1 path:
• graph ({u1, . . . ,uk+1}, {a1, . . . , ak}) with

[u1, a1,u2, . . . ,uk, ak,uk+1] walk and ui ̸= uj ,
1 ≤ i < j ≤ k + 1

• e.g. [v1, e1, v2, e3, v3, e4, v4]
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Simple definitions III

• v reachable from u if there is a u− v path in
G

• connected iff there is a u− v path in G for
all u, v ∈ V (G)
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• decide if G is connected

• obvious if we have a graphical representation

• not so obvious if we only have sets V = V (G), E = E(G)

incidence matrix adjacency matrix adjacency list

A ∈ {0, 1}|V |×|E|, A ∈ Z|V |×|V |, L = [ℓ(v) : v ∈ V ],

av,e =

{
1, if v ∈ e

0, if v /∈ e
av,w = |{e = {v,w} ∈ E}| ℓ(v) = [e : e = {u, v} ∈ E]


1 1 0 0 0 0
1 1 1 0 1 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1




0 2 0 0 0 0
2 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0


ℓ(v1) = [e1, e2]

ℓ(v2) = [e1, e2, e3, e5]
ℓ(v3) = [e3, e4]
ℓ(v4) = [e4, e5]
ℓ(v5) = [e6]
ℓ(v6) = [e6]

O(|V ||E|) O(|V |2) O(|E| log |V |)
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Testing connectivity – An algorithm

Algorithm: Depth First Search
(DFS)

Input: undirected graph G, vertex
s ∈ V (G)

Output: tree (R,T ) ⊆ G, R reachable
from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R,T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \R with {v,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w},
T := T ∪ {{v,w}}, go to 2;
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Algorithm: Depth First Search (DFS)

Input: undirected graph G, vertex s ∈ V (G)
Output: tree (R,T ) ⊆ G, R reachable from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R,T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \R with {v,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w},
T := T ∪ {{v,w}}, go to 2;

Idea

• suppose w ∈ V (G) \R is
reachable from s

⇒ P is s− w path with
{x, y} ∈ E(P ), x ∈ R,
y ∈ V (G) \R

⇒ x is added to Q in line 7

⇒ Algorithm does not stop before
x is removed from Q (line 6)

⇒ there is no w ∈ V (G) \R with
{v,w} ∈ E(G) E
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Algorithm: Depth First Search (DFS)

Input: undirected graph G, vertex s ∈ V (G)
Output: tree (R,T ) ⊆ G, R reachable from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R,T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \R with {v,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w},
T := T ∪ {{v,w}}, go to 2;

• for each node the incident
edges are considered

• runtime depends on the
storage of graph

• if adjacency lists are used,
the runtime is
O(m) = O(|E(G)|)
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Algorithm: Breadth First Search (BFS)

Input: undirected graph G, vertex s ∈ V (G)
Output: tree T ) ⊆ G

1 set Q := {s} and T = {s};
2 while Q ̸= ∅ do
3 v := first vertex in Q
4 set Q := Q \ {v}
5 while v has a neighbour not in T do
6 w := first neightbour of v not in T
7 set Q := Q ∪ {w}
8 set T := T ∪ {{v,w}}
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