
Lecture I - Welcome to Combinatorics

1 Department of Mathematics and Systems Analysis,
Systems Analysis Laboratory, Aalto University, Finland

January 8, 2024

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Definitions

– Combinatorial Optimization 2/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Definition

Combinatorial:

• adjective

• relating to the selection of a given number of elements from a larger number
without regard to their arrangement.

Optimization (or Optimisation):

• noun

• the action of making the best or most effective use of a situation or
resource.

– Combinatorial Optimization 3/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Definition

Can be achieved by:

• Analysing/Visualizing properties of functions / extreme points or

• Applying numerical methods

Optimisation has important applications in fields such as

• operations research (OR);

• economics;

• statistics;

• bioinformatics;

• machine learning and artificial intelligence.

– Combinatorial Optimization 4/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

What is optimisation?

In this course, optimisation is viewed as the core element of mathematical
programming.
Math. programming is a central OR modelling paradigm:

• variables → decisions/point of interest: business decisions, parameter
definitions, settings, geometries, ...;

• domain → constraints/limitations: logic, design, engineering, ...;

• function → objective function/profit: measurement of (decision) quality.

However, math. programming has many applications in fields other than OR, which
causes some confusion;
We will study math. programming in its most general form: both constraints and
objectives can nonlinear or linearfunctions, but the domain is discrete.

– Combinatorial Optimization 5/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Types of programming

Rule of Thumb:

The simpler are the assumptions which define a type of problems, the better
are the methods to solve such problems.

Some useful notation:

• x ∈ Rn: vector of (decision) variables xj , j = 1, . . . ,n;

• f : Rn → R ∪ {±∞} - objective function;

• X ⊆ Rn: ground set (physical constraints);

• gi,hi : Rn → R: constraint functions;
• gi(x) ≤ 0 for i = 1, . . . ,m : inequality constraints;

• hi(x) = 0 for i = 1, . . . , l : equality constraints.

– Combinatorial Optimization 6/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Types of programming

Our goal will be to solve variations of the general problem P :

(P) : min f(x)

s.t. gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , l

x ∈ X.
• Linear programming (LP): linear f(x) = c⊤x with c ∈ Rn; constraint

functions gi(x) and hi(x) are affine (a⊤i x− bi, with ai ∈ Rn, b ∈ R);
X = {x ∈ Rn : xj ≥ 0, j = 1, . . . ,n}.

• Nonlinear programming (NLP): some (or all) of the functions f , gi or hi are
nonlinear;

• (Mixed-)integer programming ((M)IP): LP where (some of the) variables
are binary (or integer). X ⊆ Rk × {0, 1}n−k

• Mixed-integer nonlinear programming (MINLP): MIP+NLP.

– Combinatorial Optimization 7/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Course Structure

– Combinatorial Optimization 8/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Structure

• Classes: Lecture and Exercise Session
→ attendance is not mandatory;
→ attendance is mandatory in Guest Lecture;

• Materials: Lectures Notes and Slides
→ available on ”MyCourse”;

– Combinatorial Optimization 9/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Assessment

• 1 project (group or individual): 60%;
−→ based on course problems;

• 3 assignments (individual): 45% (15 each).
−→ unique problem.

• Guest Lecture.

Mixture of modelling, analytical mathematics and programming.

Programming Language: Python and Julia

– Combinatorial Optimization 10/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Graphs

– Combinatorial Optimization 11/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Simple definitions I

• (undirected) graph G = (V ,E, Ψ)
• vertices V
• edges E
• function Ψ: E → {X ⊆ V : |X| = 2}

• directed graph G = (V ,E, Ψ)
• vertices V
• edges E
• function Ψ: E → {(v,w) ∈ V × V : v ̸= w}

• Edges e can have a value associated to it:
→ w −→ fuv
called weight or flow;

• in practice: e = {u, v}, e = (u, v)
respectively, G = (V ,E)
N E can contain multiple parallel edges

v1

v2 v3

v4

v5 v6

e1

e2

e3

e4e5

e6

e1

e2

e3

e4e5

e6

e1

e2

e3

e4e5

e6

– Combinatorial Optimization 12/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Simple definitions II

• edge progression W in G from u1 to uk+1:
• sequence [u1, a1,u2, . . . ,uk, ak,uk+1] with k ≥ 0
• ai = {ui,ui+1} ∈ E(G)
• e.g. [v3, e3, v2, e2, v1, e1, v2, e3, v3, e4, v4]

• walk W in G from u1 to uk+1:
• edge progression with ai ̸= aj , 1 ≤ i < j ≤ k
• e.g. [v2, e2, v1, e1, v2, e3, v3, e4, v4]

• path P in G from u1 to uk+1, u1 − uk+1 path:
• graph ({u1, . . . ,uk+1}, {a1, . . . , ak}) with

[u1, a1,u2, . . . ,uk, ak,uk+1] walk and ui ̸= uj ,
1 ≤ i < j ≤ k + 1

• e.g. [v1, e1, v2, e3, v3, e4, v4]

v1

v2 v3

v4

v5 v6

e1

e2

e3

e4e5

e6

v1

v2 v3

v4

e1

e2

e3

e4

v1

v2 v3

v4

e1

e2

e3

e4

v1

v2 v3

v4

e1

e3

e4

– Combinatorial Optimization 13/20

Combinatorial
Optimization

Definitions

Mathematical
programming and
optimisation

Types of
mathematical
optimisation models

Course
Structure

Graphs

Simple definitions III

• v reachable from u if there is a u− v path in
G

• connected iff there is a u− v path in G for
all u, v ∈ V (G)

v1

v2 v3

v4

v5 v6

e1

e2

e3

e4e5

e6

– Combinatorial Optimization 14/20

Combinatorial
Optimization

Testing connectivity

• decide if G is connected

• obvious if we have a graphical representation

• not so obvious if we only have sets V = V (G), E = E(G)

incidence matrix adjacency matrix adjacency list

A ∈ {0, 1}|V |×|E|, A ∈ Z|V |×|V |, L = [ℓ(v) : v ∈ V],

av,e =

{
1, if v ∈ e

0, if v /∈ e
av,w = |{e = {v,w} ∈ E}| ℓ(v) = [e : e = {u, v} ∈ E]

1 1 0 0 0 0
1 1 1 0 1 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 1

0 2 0 0 0 0
2 0 1 1 0 0
0 1 0 1 0 0
0 1 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

ℓ(v1) = [e1, e2]

ℓ(v2) = [e1, e2, e3, e5]
ℓ(v3) = [e3, e4]
ℓ(v4) = [e4, e5]
ℓ(v5) = [e6]
ℓ(v6) = [e6]

O(|V ||E|) O(|V |2) O(|E| log |V |)

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

– Combinatorial Optimization 15/20

Combinatorial
Optimization

Testing connectivity – An algorithm

Algorithm: Depth First Search
(DFS)

Input: undirected graph G, vertex
s ∈ V (G)

Output: tree (R,T) ⊆ G, R reachable
from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R,T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \R with {v,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w},
T := T ∪ {{v,w}}, go to 2;

v1

v2 v3

v4

v5 v6

e1

e2
e3

e4e5

e6

Q R

v2

T

v2

v1

e1

v1

v4

e5v4

v3

e4v3

– Combinatorial Optimization 16/20

Combinatorial
Optimization

Correctness

Algorithm: Depth First Search (DFS)

Input: undirected graph G, vertex s ∈ V (G)
Output: tree (R,T) ⊆ G, R reachable from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R,T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \R with {v,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w},
T := T ∪ {{v,w}}, go to 2;

Idea

• suppose w ∈ V (G) \R is
reachable from s

⇒ P is s− w path with
{x, y} ∈ E(P), x ∈ R,
y ∈ V (G) \R

⇒ x is added to Q in line 7

⇒ Algorithm does not stop before
x is removed from Q (line 6)

⇒ there is no w ∈ V (G) \R with
{v,w} ∈ E(G) E

– Combinatorial Optimization 17/20

Combinatorial
Optimization

Running time

Algorithm: Depth First Search (DFS)

Input: undirected graph G, vertex s ∈ V (G)
Output: tree (R,T) ⊆ G, R reachable from s

1 set R := {s}, Q := {s} and T = ∅;
2 if Q = ∅ then return R,T ;
3 else v := last vertex added to Q;
4 choose w ∈ V (G) \R with {v,w} ∈ E(G);
5 if there is no such w then
6 set Q := Q \ {v} and go to 2

7 set R := R ∪ {w}, Q := Q ∪ {w},
T := T ∪ {{v,w}}, go to 2;

• for each node the incident
edges are considered

• runtime depends on the
storage of graph

• if adjacency lists are used,
the runtime is
O(m) = O(|E(G)|)

– Combinatorial Optimization 18/20

Combinatorial
Optimization

Breadth-First Search

Algorithm: Breadth First Search (BFS)

Input: undirected graph G, vertex s ∈ V (G)
Output: tree T) ⊆ G

1 set Q := {s} and T = {s};
2 while Q ̸= ∅ do
3 v := first vertex in Q
4 set Q := Q \ {v}
5 while v has a neighbour not in T do
6 w := first neightbour of v not in T
7 set Q := Q ∪ {w}
8 set T := T ∪ {{v,w}}

– Combinatorial Optimization 19/20

Combinatorial
Optimization

– Combinatorial Optimization 20/20

	Definitions
	Mathematical programming and optimisation
	Types of mathematical optimisation models

	Course Structure
	Graphs
	Why algorithms?

