
LECTURE NOTES - WEEK X
Approximations

Lecture Notes - Week X
Approximations

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

March 11, 2024

1



LECTURE NOTES - WEEK X
Approximations

CHAPTER 1
Greedy Algorithms

In Mathematics and Computer Science, approximation algorithms are alternative approaches to finding
optimal solutions or near-optimal ones with guaranteed distance.

It does differ from relaxations (where some of the constraints are eliminated/replaced). Two common
strategies are Greedy Algorithms and Local Search.
Starting with greedy methods, a quote from a movie which encapsulates exactly the reason behind those
algorithms:

Greed, in the lack of a better word, is good.

Michael Douglas in ”Wall Street” (1987)

In Computer Science and Discrete Mathematics, greedy means ”the best at this moment”. It looks for a
local optimal solution at each iteration. Hence, there is no clear guarantee of global optimality.

However, there are some exceptions.

1.1 GREEDY PROPERTIES

Algorithms such as Dijkstra’s and Prim’s are optimal and are greedy methods. This leads to the following
thought:

Question: What properties do some problems have that make their greedy approach optimal? Those are:

Choice Property and Optimal Substructure.
As iterative problems, at each iteration, greedy methods such as those listed above find the best (local
optimal) solution for that particular version of the problem. They do consider previous solutions, but do not
regard future choices and remaining solutions from alternative sub-problems. However, horizon effect is
also a risk.

In addition, making a single decision per iteration is constantly reducing the problem. It differs from
dynamic program because the former exhaustively searches all possible solutions of all subproblems and

CHAPTER 1. GREEDY ALGORITHMS 2



LECTURE NOTES - WEEK X
Approximations

also guarantees an optimal solution.

As present in dynamic programming, greedy algorithms require sub-optimal structure to build newer (and
improved) solutions.
Consider a brand new problem as an example. Imagine a scenario where you are attending a film festival
with all critically acclaimed movies. During your visit, you want to watch to completion the largest amount
of movies as possible.

You can access the entire list of movies and the starting and finishing time for each session. The goal is
to figure out the best sequence of movies to watch at a specific time in order to maximize the amount and
avoid any overlap between two or more distinct movies.

Figure 1.1: Comple list of movies available in the festival

Such a problem is known as Job Scheduling Problem.

A greed approach to find an optimal solution is as follows:

1. Sort all movies by their finishing time;

2. Book the first film in the list;

CHAPTER 1. GREEDY ALGORITHMS 3



LECTURE NOTES - WEEK X
Approximations

3. Go through all the other films in the list (in order) and book all the movies whose start time is at least
the same as the previous movie finishing time.

Figure 1.2: Solution for the optimal schedule of your visit to this festival

Question: Now, can we guarantee it is optimal?

Considering A as the set of all movie available. If you consider B as the subset of movies without overlap-
ping, such that B ⊆ A.

Let ax be the movie in A that is different than an activity in B. Hence, A = a1, a2, · · · , ax , ax+1 and
B = a1, a2, · · · , bx , bx+1.

Since A was chosen by a greedy algorithm, ax must have a finish time which is earlier than the finish time
of bx . Thus, B′ = a1, a2, · · · , ax , bx+1 is also a valid schedule, considering that B′ = B − {bx} ∪ {ax}.

The solution proposed in the JSP also reveals the general structure for any greedy method:

• Start by sorting whichever object that is represented (or partially represented) by your decision
variable;

– For instance, in Dijkstra algorithm, every ”next node” is chosen based on shortest path to the
current node;

– In Kruskal’s algorithm, each edge is selected in increasing order of their respective weights;

– In Prim’s algorithm, a new node is added to the ”cut” based on the smallest weight value.

• Select one solution for the current problem: all possible values are ignored, a single optimal solution
is taken

– In Dijkstra’s, Prim’s and other, a single solution is taken;

• Update the problem;

CHAPTER 1. GREEDY ALGORITHMS 4



LECTURE NOTES - WEEK X
Approximations

– Add a node to the optimal path (as in Dijkstra’s), an edge (as in Prim’s and Kruskal’s) or a
movie (as in our previous JSP example);

• Repeat the process until no more updates to the problem are possible.

CHAPTER 1. GREEDY ALGORITHMS 5



LECTURE NOTES - WEEK X
Approximations

CHAPTER 2
Local Search

Different from greedy algorithm, local search has a more broad definition and steps. However, its principle
is very simple: look in the neighbourhood.

Definition 1 A neighbourhood of a solution p is a set of solutions that are in some sense close to p.
Normally, it can be easily computed from p or share a significant amount of structure with p.

The neighbourhood generating function may or may not be able to generate the optimal solution. Hence,
optimality is not guaranteed.

When the neighbourhood function can generate the global optima, starting from any initial feasible point, it
is called exact.

In continuous optimization, it can be easily derived from gradient methods. What about discrete
optimization?

For each particular problem, a neighbourhood function is required. This function should be able to map
each solution into the feasible region of a problem and allow for small changes. Hence, it should have
good tractability.

The most common type of neighbour function has operators (which generate new candidate solutions)
using key structures in combinatorics: either adding and removing elements of solution or exchanging
two or more elements.

In combinatorics, there is no clear way to validate that a candidate solution is globally optimal. Hence,
local search provides efficient algorithms for local optimal only.

In addition, the quality of the local optimal is highly dependent on the neighbourhood operator.

In conclusion, local search algorithms are very much tailored to specific problems, and a general pseudo-
code is not viable.

Methods relying on local search have a few limitations. Mainly:

• Neighbourhood range

CHAPTER 2. LOCAL SEARCH 6



LECTURE NOTES - WEEK X
Approximations

– Only in the feasible region? How much of the feasible region should be considered?

• Efficient neighbourhood operators

– Those are vital to algorithm performance. Which one is the best? Is there a ”one size feats all”?

• Initial solution

– How to determine the initial solution? Randomly? Via greedy algorithms?

• Strategy

– What is the best way to navigate through the feasible region?

• Stop criteria

– There is not a clear way to guarantee that a better solution will not be found. Hence, where and
when should the method stop?

• Performance guarantee

– How to determine if the effort put into a local search method will be fruitful? Typically it is.

Nevertheless, those methods have some remarkable advantages:

• Novelty

– Due to highly specificity and tailoring, most of the local search algorithms are novel.

• Efficient in performance

– The effort put into novel work is reflected in their astonishing performance, although not yet
polynomial

• Research delights

– Many research projects are funded based on local search methods, even being the birthplace
for sub-fields such as genetic algorithms.

CHAPTER 2. LOCAL SEARCH 7


	Greedy Algorithms
	Greedy Properties

	Local Search

