Lecture Notes - Week II

Paths and Trees

CHAPTER

A few more definitions

Recalling the definitions from the previous lecture, we can further improve the definitions of paths and cycles. For a path P in G from u_{1} to u_{k+1} (as an edge progression):

- $\operatorname{Graph}\left(\left\{u_{1}, \ldots, u_{k+1}\right\},\left\{a_{1}, \ldots, a_{k}\right\}\right)$ with $\left[u_{1}, a_{1}, u_{2}, \ldots, u_{k}, a_{k}, u_{k+1}\right]$ walk and $u_{i} \neq u_{j}, 1 \leq i<j \leq$ $k+1$
- e.g. $\left[v_{1}, e_{1}, v_{2}, e_{3}, v_{3}, e_{4}, v_{4}\right]$

For cycles such C in G :

- graph $\left(\left\{u_{1}, \ldots, u_{k}\right\},\left\{a_{1}, \ldots, a_{k}\right\}\right)$ with $\left[u_{1}, a_{1}, u_{2}, \ldots, u_{k}, a_{k}, u_{1}\right]$ (closed) walk, $k \geq 2$ and $u_{i} \neq u_{j}$, $1 \leq i<j \leq k$
- e.g. $\left[v_{2}, e_{3}, v_{3}, e_{4}, v_{4}, e_{5}, v_{2}\right]$
- connected if there is a $u-v$ path in G for all $u, v \in V(G)$

1.1 New

A graph G without a cycle is called forest, while a connected graph G without a cycle is called tree.

Now, let $G=(V, E)$ undirected graph with $|V|=n$. Then the following are equivalent:

1. G is a tree, i.e., connected and cycle-free.
2. G is cycle-free and has $n-1$ edges.
3. G is connected and has $n-1$ edges.
4. G is minimally connected (removing an edge \Rightarrow not connected anymore).
5. G is maximally cycle-free (adding an edge \Rightarrow cycle).
6. G contains a unique $u-v$ path for any pair of vertices $u, v \in V$.

Let $G=(V, E)$ undirected graph. $T=\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$ is a spanning tree of G iff T is a tree. Hence, G is connected if it contains a spanning tree. Let $K_{n}=(V, E)$ be the complete graph with $|V|=n$ vertices, i.e., for any $u, v \in V$ the edge $\{u, v\} \in E$ exists. Then the number of spanning trees in K_{n} is n^{n-2}.

Aalto University

CHAPTER

Finding Paths

The most useful instance of paths is to identify the shortest path in a graph. Finding the minimum path length between two nodes is trivial, and via BFS, it can be easily applied. At the same time, finding the minimum path length between a node and all the others is also trivial and BFS apply to each node individually would suffice.

Challenge: finding the minimum-cost path from a node to all the other in a weighted graph.

A weighted graph is a graph where all the edges have a specific value. It can also named as a flow network.

Definition 1 (Flow network) A tuple $G=(V, E, f)$ is said to be a flow network if (V, E) where for every edge $(u, v) \in E$ we have an associated positive integer flow value $f_{u v}$.

It also satisfying conservation of flow for every $v \in V \backslash\{s, t\}$, where s is an unique source and t is unique sink.

$$
\begin{equation*}
\sum_{(u, v) \in E} f_{u v}=\sum_{(v, w) \in E} f_{v w} \tag{2.1}
\end{equation*}
$$

Therefore, the goal is to calculate the shortest path from a node to each other vertices. Unfortunately, BFS will not suffice (because the shortest path may not have the fewest edges).

Alternative: Dijkstra's algorithm.
Edsger Dijkstra (1930-2002) was a Dutch computer scientist, programmer, software engineer, and science essayist and very influential in Computer Science and Discrete Mathematics. One of this most famous quotes is (which is encapsulated in his most famous algorithm):

"Simplicity is a prerequisite for reliability."

Speaking of algorithm, it is general idea for Dijkstra's approach is as follows:

Figure 2.1: Edsger W. Dijkstra

1. Iteratively increase the "set of nodes with known shortest distances";
2. Any node outside this set will have a "best distance so far";
3. Update the "best distance so far" until add all nodes to set.

The resulting algorithm is:

```
Algorithm: DIJKSTRA'S ALGORITHM
Input: undirected, connected graph \(G\), weights \(c: E(G) \rightarrow \mathbb{R}\), nodes \(V\), source \(s\)
\(d_{v}\) distance to reach node \(v\)
\(p_{v}\) node predecessor to node \(v\)
\(Q \leftarrow \emptyset\) set of "unkown distance" nodes.
for each node \(v\) in \(V\) do
    \(d_{v} \leftarrow \infty\)
    \(p_{v} \leftarrow F A L S E\)
    add \(v\) in \(Q\)
\(d_{s} \leftarrow 0\)
while \(Q \neq \emptyset\) do
    \(u \leftarrow\) node in \(Q\) with \(\min d_{u}\)
    remove \(u\) from \(Q\)
    for each neighbor \(v\) of \(u\) still in \(Q\) do
        \(d \leftarrow d_{u}+c_{u v}\)
        if alt \(<d_{v}\) then
            \(d_{v} \leftarrow a l t\)
            \(p_{v} \leftarrow u\)
return \(d_{v}, p_{v}\)
```


In terms of runtime, this algorithm, when implemented to its best, has a runtime to $O(m+n \cdot \log (n)$, where m is the amount of edges and n is the number of nodes.

Alternatively, there is also an integer linear programming which can be applied (although not recommend):

$$
\begin{align*}
& \min \sum_{(u, v) \in E} f_{u v} x_{u v} \tag{2.2a}\\
& \text { subject to: } \tag{2.2b}\\
& \sum_{(s, v) \in E} x_{s v}=1, \tag{2.2c}\\
& \sum_{(u, t) \in E} x_{u t}=1, \tag{2.2d}\\
& \sum_{(u, v) \in E} x_{u v}-\sum_{(v, w) \in E} x_{v w i}=0, \tag{2.2e}
\end{align*}
$$

$$
\begin{equation*}
x_{u v} \in\{0,1\}, \quad \forall(u, v) \in E \tag{2.2f}
\end{equation*}
$$

Constraints (2.2c) and (2.2d) ensures that a path starts in the source and ends in the sink, while constraint
(2.2e) guarantees that intermediary nodes have a single edge in and a single edge out. The objective minimizes the total combined weight of the edges in that path.

CHAPTER

Minimal Spanning Trees

For spanning trees, the goal is to find an algorithm for a minimum spanning tree (MST). First, formally establishing the problem:

Instance: An undirected, connected graph G, weights $c: E(G) \rightarrow \mathbb{R}$.
Task: Find a spanning tree T in G of minimum weight.

The optimality conditions for such a problem are as follows:

Theorem 1 Let (G, c) be an instance of the MST problem and T a spanning tree in G. Then the following are equivalent:

1. T is optimal.

2. For every $e=\{x, y\} \in E(G) \backslash E(T)$, no edge on the $x-y$ path in T has higher cost than e.
3. For every $e \in E(T)$, e is a minimum cost edge of $\delta(V(C))$, where C is a connected component of $T-e$.
4. We can order $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$ such that for each $i \in\{1, \ldots, n-1\}$ there exists a set $X \subseteq V(G)$ such that e_{i} is a minimum cost edge of $\delta(X)$ and $e_{j} \notin \delta(X)$ for all $j \in\{1, \ldots, i-1\}$.

$\delta(X)=\{\{u, v\} \in E: u \in X, v \notin x\}$
edges from X to

This problem has been studied to extension, and two algorithms have been proposed from the literature. The starting point comes from the following theorem:

Theorem 2 Let $G=(V, E)$ undirected graph with $|V|=n$. Then the following are equivalent:

1. G is a tree, i.e., connected and cycle-free.
2. G is cycle-free and has $n-1$ edges.
3. G is connected and has $n-1$ edges.
4. G is minimally connected (removing an edge \Rightarrow not connected anymore).
5. G is maximally cycle-free (adding an edge \Rightarrow cycle).
6. G contains a unique $u-v$ path for any pair of vertices $u, v \in V$.

3.1 KRUSKAL'S ALGORITHM

The first option (in no particular order) is Kruskal's algorithm (proposed by Joseph Kruskal in 1956).

```
Algorithm: KruSkal's AlgORITHM
Input: undirected, connected graph G, weights c: }E(G)->\mathbb{R
Output: spanning tree T of minimum weight
sort edges such that c(e, ) \leqc(e2)\leq\ldots\leqc(em)
set T:=(V(G),\emptyset)
for i:= 1 to m do
    if T+ e}\mp@subsup{e}{i}{}\mathrm{ contains no cycle then
        set T:=T+ ei
return T
```

In the following picture, it is shown how each step is calculated:

Execution:

$E(T)=\emptyset$
$E(T)=\left\{e_{1}\right\}$
$E(T)=\left\{e_{1}, e_{2}\right\}$
$E(T)=\left\{e_{1}, e_{2}, e_{3}\right\}$
$E(T)=\left\{e_{1}, e_{2}, e_{3}, e_{5}\right\}$
$E(T)=\left\{e_{1}, e_{2}, e_{3}, e_{5}, e_{6}\right\}$

Test:

$$
\begin{aligned}
& e_{1}=\left\{v_{1}, v_{3}\right\} \boldsymbol{\downarrow} \\
& e_{2}=\left\{v_{5}, v_{6}\right\} \downarrow \\
& e_{3}=\left\{v_{1}, v_{2}\right\} \downarrow \\
& e_{4}=\left\{v_{2}, v_{3}\right\} \boldsymbol{x} \rightsquigarrow \text { cycle } \\
& e_{5}=\left\{v_{4}, v_{6}\right\} \downarrow \\
& e_{6}=\left\{v_{3}, v_{6}\right\} \downarrow \\
& e_{7}=\left\{v_{3}, v_{5}\right\} \boldsymbol{x} \rightsquigarrow \text { cycle } \\
& e_{8}=\left\{v_{2}, v_{4}\right\} \boldsymbol{x} \rightsquigarrow \text { cycle } \\
& e_{9}=\left\{v_{3}, v_{5}\right\} \boldsymbol{x} \rightsquigarrow \text { cycle }
\end{aligned}
$$

In terms of correctness, T is maximally cycle-free (no further edge can be added), which is contemplated as a tree. For each edge $e_{i}=\{x, y\} \in E(G) \backslash E(T)$:

- $T+e_{i}$ contains a cycle in line 4;
- there exists a x - y path in T at this point;
- all edges in T have lower weight than e_{i} at this point.

Hence, T is MST.

In terms of runtime:

- sorting edges: $O(m \log m)$
- loop lines 3-5: checking m times for cycles
- checking for cycle containing $e=\{u, v\}$
- DFS starting from u with at most n edges, check if v is reachable: $O(n)$
\rightsquigarrow total running time: $O(m n)$
To sum up, Kruskal's algorithm is guaranteed to be cycle-free and greedily add edges until maximally cycle-free.

3.2 PRIMS ALGORITHM

An alternative is Prim's algorithm (developed in 1930 by Czech mathematician Vojtěch Jarník and later rediscovered and republished by computer scientists Robert C. Prim in 1957 and Edsger W. Dijkstra in 1959).

```
Algorithm: PRIM's ALGORITHM
Input: undirected, connected graph \(G\), weights \(c: E(G) \rightarrow \mathbb{R}\)
Output: spanning tree \(T\) of minimum weight
choose \(v \in V(G)\)
set \(T:=(\{v\}, \emptyset)\)
while \(V(T) \neq V(G)\) do
    choose an edge \(e \in \delta_{G}(V(T))\) of minimum weight
    set \(T:=T+e\)
return \(T\)
```

Using the following figure as an example:

Execution:

$V(T)=\left\{v_{1}\right\}$
$E(T)=\emptyset$
$V(T)=\left\{v_{1}, v_{3}\right\}$
$E(T)=\left\{\left\{v_{1}, v_{3}\right\}\right\}$
$V(T)=\left\{v_{1}, v_{3}, v_{2}\right\}$
$E(T)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}\right\}$
$V(T)=\left\{v_{1}, v_{3}, v_{2}, v_{6}\right\}$
$E(T)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{6}\right\}\right\}$
$V(T)=\left\{v_{1}, v_{3}, v_{2}, v_{6}, v_{5}\right\}$
$E(T)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{6}\right\},\left\{v_{5}, v_{6}\right\}\right\}$
$V(T)=\left\{v_{1}, v_{3}, v_{2}, v_{6}, v_{5}, v_{4}\right\}$
$E(T)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{6}\right\},\left\{v_{5}, v_{6}\right\},\left\{v_{4}, v_{6}\right\}\right\}$

Test:

$\delta_{G}(V(T))=$
$\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}\right\}$
$\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{6}\right\}\right\}$
$\left\{\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{6}\right\}\right\}$
$\left\{\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{5}, v_{6}\right\}\right\}$
$\left\{\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{6}\right\}\right\}$

Regarding runtime, the best performance can be achieved as $O(m \log n)$.
Finally, a ILP formulation for MST (known as Martin formulation):

$$
\begin{equation*}
\min \sum_{(u, v) \in E} f_{u v} x_{u v} \tag{3.1a}
\end{equation*}
$$

subject to:

$$
\begin{array}{ll}
\sum_{(u, v) \in E} x_{u v}=n-1, & \\
y_{u v}^{k}+y_{v i}^{k}=x_{u v}, & (u, v) \in E, k \in V \\
\sum_{k \in V \backslash\{(u, v)\}} y_{u k}^{v}+x_{u v}=1, & \forall(i, j) \in E \\
x_{u v}, y_{u v}^{k}, y_{v u}^{k} \in\{0,1\}, & \forall(u, v) \in E, k \in V
\end{array}
$$

In the formulation above, $y_{u v}^{k}$ denotes that edge (u, v) is in the spanning tree and node k is on the side of v.
The constraint (3.1d) guarantees that if $(u, v) \in E$ is selected into the tree, any node $k \in V$ must be on either side of v (depending if $y_{u v}^{k}=1$ or $y_{v u}^{k}=1$). If $(u, v) \in E$ is not in the tree, any node k cannot be on the side of v or u.

The final constraint ensures that if $(u, v) \in E$ is in the tree, edges (u, k) which connects u are on the side of u. If it is not in the tree, there must be and edge (u, k) such that v is on the side of $k\left(y_{u k}^{v}=1\right.$ for some k).

