Lecture II - Paths and Trees

¹ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

January 8, 2024

Aalto University

Combinatorial Optimization

Previously on.

Useful Definitions Shortest Path Spanning Tree

Previously on..

Combinatorial Optimization

Previously on.

Useful Definitions Shortest Path Spanning Tree

- Graphs
- Paths, Walks, Trials,
- BFS and DFS.

PREVIOUSLY ON

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path Spanning Tree

Useful Definitions

Cycles

Aalto University

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

- Path P in G from u_1 to u_{k+1} :
 - Graph $(\{u_1, \ldots, u_{k+1}\}, \{a_1, \ldots, a_k\})$ with $[u_1, a_1, u_2, \ldots, u_k, a_k, u_{k+1}]$ walk and $u_i \neq u_j$, $1 \leq i < j \leq k+1$
 - e.g. $[v_1, e_1, v_2, e_3, v_3, e_4, v_4]$
- Cycle C in G:
 - graph $(\{u_1, \ldots, u_k\}, \{a_1, \ldots, a_k\})$ with $[u_1, a_1, u_2, \ldots, u_k, a_k, u_1]$ (closed) walk, $k \ge 2$ and $u_i \ne u_j$, $1 \le i < j \le k$
 - e.g. $[v_2, e_3, v_3, e_4, v_4, e_5, v_2]$

Trees and forests

- A graph G without a cycle is called *forest*.
- A *connected* graph G without a cycle is called *tree*.

Aalto Oliversity

Combinatorial Optimization

Previously on ..

Useful Definitions

Shortest Path

Characterization of trees

Theorem

Let G = (V, E) undirected graph with |V| = n. Then the following are equivalent:

- **(**) *G* is a tree, i.e., connected and cycle-free.
- **(**) G is cycle-free and has n-1 edges.
- **(a)** G is connected and has n-1 edges.
- **(**) G is minimally connected (removing an edge \Rightarrow not connected anymore).
- (a) G is maximally cycle-free (adding an edge \Rightarrow cycle).
- (f) G contains a unique u v path for any pair of vertices $u, v \in V$.

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Spanning trees

Definition

Let G = (V, E) undirected graph. T = (V, E') with $E' \subseteq E$ is a *spanning tree* of G iff T is a tree.

Lemma

G is connected iff it contains a spanning tree.

Theorem

Let $K_n = (V, E)$ be the complete graph with |V| = nvertices, i.e., for any $u, v \in V$ the edge $\{u, v\} \in E$ exists. Then the number of spanning trees in K_n is n^{n-2} .

Combinatorial Optimization

Previously on ..

Useful Definitions

Shortest Path Spanning Tree

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Spanning Tree

Shortest Path

Finding Paths

Finding the **minimum path length** between **two nodes** is trivial.

 \rightarrow **BFS** can be easily applied;

Finding the **minimum path length** between **a node and all the others** is also trivial.

 \rightarrow BFS apply to each node individually;

Challenge: finding the **minimum-cost path** from a node to all the other in a **weighted** graph.

Combinatorial Optimization

Previously on ..

Useful Definitions

Shortest Path

Flow Network

A **weighted graph** is a graph where all the edges has a specific value associated to them. It can also named as a **flow network**.

Definition (Flow network)

A tuple G = (V, E, f) is said to be a *flow network* if (V, E) where for every edge $(u, v) \in E$ we have an associated positive integer *flow value* f_{uv} .

It also satisfying *conservation of flow* for every $v \in V \setminus \{s, t\}$, where s is an unique source and t is unique sink.

$$\sum_{(u,v)\in E} f_{uv} = \sum_{(v,w)\in E} f_{vw}.$$
(1)

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Combinatorial Optimization

Previously on ..

Useful Definitions

Shortest Path

Spanning Tree

Goal: from a given node, what are the shortest path to each of the other vertices. Unfortunately, BFS will not suffice.

Shortest path may not have the fewest edges. **Alternative**: Dijkstra's algolrithm.

Dijkstra

Edsger Dijkstra (1930-2002)

Figure: Edsger W. Dijkstra

"Simplicity is prerequisite for reliability."

Combinatorial

Optimization

Previously on ..

Useful Definitions

Shortest Path

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

- Iteratively increase the "set of nodes with known shortest distances";
 Any node outside this set will have a "best distance so far";
 Iteratively increase the "heat distance on far" with add all nodes to get.
- Update the "best distance so far" until add all nodes to set.

	Combinatorial Optimization
Algorithm: DIJKSTRA'S ALGORITHM - Preparation	Optimization
Input: undirected, connected graph G , weights $c \colon E(G) \to \mathbb{R}$, nodes V ,	Previously on
source s	Useful
1 d_v distance to reach node v	Definitions
2 p_v node predecessor to node v	Shortest Path
3 $Q \leftarrow \emptyset$ set of "unkown distance" nodes.	Spanning Tree
4 for each node v in V do	
5 $d_v \leftarrow \infty$	
6 $p_v \leftarrow FALSE$	
7 add v in Q	
8 $d_s \leftarrow 0$	
	—

Dijkstra's Algorithm

Δ	
Aalto U	niversity

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Spanning Tree

Output: d_v, p_v 1 while $Q \neq \emptyset$ do $u \leftarrow \mathsf{node} \text{ in } Q \text{ with } \min d_u$ 2 remove u from Q3 for each neighbor v of u still in Q do 4 $d \leftarrow d_u + c_{uv}$ 5 if $alt < d_v$, then 6 $\begin{array}{l} d_v \leftarrow alt \\ p_v \leftarrow u \end{array}$ 7 8

9 return d_v , p_v

Algorithm: DIJKSTRA'S ALGORITHM - Calculation

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Spanning Tree

Minimal spanning trees

Minimum Spanning Tree Problem

Instance: An undirected, connected graph G, weights $c \colon E(G) \to \mathbb{R}$.

Task: Find a spanning tree T in G of minimum weight.

Combinatorial Optimization

Previously on ..

Useful Definitions

Shortest Path

Optimality conditions

Theorem

Let (G, c) be an instance of the MST problem and T a spanning tree in G. Then the following are equivalent:

- (1) T is optimal.
- () For every $e = \{x, y\} \in E(G) \setminus E(T)$, no edge on the x y path in T has higher cost than e.
- (a) For every $e \in E(T)$, e is a minimum cost edge of $\delta(V(C))$, where C is a connected component of T e.
- **()** We can order $E(T) = \{e_1, \ldots, e_{n-1}\}$ such that for each $i \in \{1, \ldots, n-1\}$ there exists a set $X \subseteq V(G)$ such that e_i is a minimum cost edge of $\delta(X)$ and $e_j \notin \delta(X)$ for all $j \in \{1, \ldots, i-1\}$.

Previously on..

Useful Definitions

Shortest Path

Optimality conditions

Aalto University

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Two algorithms

Theorem

Let G = (V, E) undirected graph with |V| = n. Then the following are equivalent:

- a) G is a tree, i.e., connected and cycle-free.
- d) G is minimally connected (removing an edge \Rightarrow not connected anymore).
- e) G is maximally cycle-free (adding an edge \Rightarrow cycle).

Kruskal

- guaranteed to be cycle-free
- greedily add edges until *maximally cycle-free*

Prim

- grow one connected component
- greedily add edges until *minimally connected*

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Combinatorial Optimization

Useful

Definitions

Algorithm: KRUSKAL'S ALGORITHM

Input: undirected, connected graph G, weights $c: E(G) \to \mathbb{R}$ **Output:** spanning tree T of minimum weight

- 1 sort edges such that $c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$
- 2 set $T := (V(G), \emptyset)$
- 3 for i:=1 to m do
- 4 if $T + e_i$ contains no cycle then

 $\mathbf{6}$ return T

Kruskal's algorithm

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Spanning Tree

Test

 $E(T) = \emptyset \ E(T) = \{e_1\}$ $E(T) = \{e_1, e_2\} \ E(T) = \{e_1, e_2, e_3\}$ $E(T) = \{e_1, e_2, e_3, e_5\}$ $E(T) = \{e_1, e_2, e_3, e_5, e_6\}$

$$\begin{array}{l} e_1 = \{v_1, v_3\} \checkmark e_2 = \{v_5, v_6\} \checkmark \\ e_3 = \{v_1, v_2\} \checkmark e_4 = \{v_2, v_3\} \bigstar \rightsquigarrow \text{ cycle} \\ e_5 = \{v_4, v_6\} \checkmark e_6 = \{v_3, v_6\} \checkmark \\ e_7 = \{v_3, v_5\} \bigstar \implies \text{ cycle } e_8 = \{v_2, v_4\} \\ \bigstar \implies \text{ cycle } e_9 = \{v_3, v_5\} \bigstar \implies \text{ cycle} \end{array}$$

Kruskal's algorithm – Correctness

Algorithm: KRUSKAL'S ALGORITHM **Input:** undirected, connected graph G, weights $c \colon E(G) \to \mathbb{R}$ **Output:** spanning tree T of minimum weight 1 sort edges such that $c(e_1) \le c(e_2) \le \ldots \le c(e_m)$ 2 set $T := (V(G), \emptyset)$ 3 for i := 1 to m do if $T + e_i$ contains no cycle then 4 set $T := T + e_i$ 5

 $\mathbf{6}$ return T

- T is maximally cycle-free (no further edge can be added) $\Rightarrow T$ is a tree
- for $e_i = \{x, y\} \in E(G) \setminus E(T)$:

Aalto University

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

- $T + e_i$ contains a cycle in line 4
- there exists a x y path in T at this point
- all edges in T have lower weight than e_i at this point
- $\Rightarrow T \text{ is MST}$

Kruskal's algorithm – Running time

Algorithm: KRUSKAL'S ALGORITHMInput: undirected, connected graph G,
weights $c \colon E(G) \to \mathbb{R}$ Output: spanning tree T of minimum
weight1 sort edges such that

$$c(e_1) \leq c(e_2) \leq \ldots \leq c(e_m)$$

2 set
$$T := (V(G), \emptyset)$$

- 3 for i := 1 to m do

6 return T

- sorting edges: $O(m \log m)$
- loop lines 3-5: checking *m* times for cycles
- checking for cycle containing $e = \{u, v\}$

• DFS starting from
$$u$$

with at most n
edges, check if v is
reachable: $O(n)$

$$\rightsquigarrow$$
 total running time: $O(mn)$

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Prim's algorithm

Input: undirected, connected graph G, weights $c: E(G) \to \mathbb{R}$

Output: spanning tree T of minimum weight

- 1 choose $v \in V(G)$
- 2 set $T := (\{v\}, \emptyset)$

3 while $V(T) \neq V(G)$ do

4 choose an edge $e \in \delta_G(V(T))$ of minimum weight

$$5 \quad | \quad \operatorname{set} \, T := T + e$$

6 return T

Combinatorial Optimization

Previously on ..

Useful Definitions

Shortest Path

Prim's algorithm

Aalto University

Combinatorial Optimization

Previously on ..

Useful Definitions

Shortest Path

Prim's algorithm

$$\begin{split} V(T) &= \{v_1\} \\ E(T) &= \emptyset \ V(T) = \{v_1, v_3\} \\ E(T) &= \{\{v_1, v_3\}\} \ V(T) = \{v_1, v_3, v_2\} \\ E(T) &= \{\{v_1, v_3\}, \{v_2, v_3\}\} \ V(T) = \{v_1, v_3, v_2, v_6\} \\ E(T) &= \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}\} \ V(T) = \{v_1, v_3, v_2, v_6, v_5\} \\ E(T) &= \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}, \{v_5, v_6\}\} \ V(T) = \{v_1, v_3, v_2, v_6, v_5, v_4\} \\ E(T) &= \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}, \{v_5, v_6\}\} \ V(T) = \{v_1, v_3, v_2, v_6, v_5, v_4\} \\ E(T) &= \{\{v_1, v_3\}, \{v_2, v_3\}, \{v_3, v_6\}, \{v_5, v_6\}, \{v_4, v_6\}\} \end{split}$$

$$\begin{split} &\delta_G(V(T)) = \\ &\{\{v_1, v_2\}, \{v_1, v_3\}\} \ \ \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_3, v_6\}\} \\ &\{\{v_2, v_4\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_3, v_6\}\} \\ &\{\{v_2, v_4\}, \{v_3, v_4\}, \{v_3, v_5\}, \{v_4, v_6\}, \{v_5, v_6\}\} \ \ \{\{v_2, v_4\}, \{v_3, v_4\}, \{v_4, v_6\}\} \end{split}$$

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Summary running times MST

Combinatorial Optimization

Previously on..

Useful Definitions

Shortest Path

Spanning Tree

Kruskal naive implementation O(m + O(m +

O(mn) $O(m\log n)$ Prim naive implementation most optimal

on
$$O(m+n^2)$$

 $O(m\log n)$

