Lecture II - Paths and Trees

${ }^{1}$ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

January 8, 2024

Aalto University

Previously on..

Combinatorial
Optimization

Previously on:.
Useful
Definitions
Shortest Path
Spanning Tree

- Graphs
- Paths, Walks, Trials,

PREVIOUSLY ON...

- BFS and DFS.

Useful Definitions

Combinatorial
Optimization

Cycles

- Path P in G from u_{1} to u_{k+1} :
- Graph $\left(\left\{u_{1}, \ldots, u_{k+1}\right\},\left\{a_{1}, \ldots, a_{k}\right\}\right)$ with $\left[u_{1}, a_{1}, u_{2}, \ldots, u_{k}, a_{k}, u_{k+1}\right]$ walk and $u_{i} \neq u_{j}$, $1 \leq i<j \leq k+1$
- e.g. $\left[v_{1}, e_{1}, v_{2}, e_{3}, v_{3}, e_{4}, v_{4}\right]$
- Cycle C in G :
- graph $\left(\left\{u_{1}, \ldots, u_{k}\right\},\left\{a_{1}, \ldots, a_{k}\right\}\right)$ with

Combinatorial Optimization

Previously on. Definitions

Shortest Path Spanning Tree

Trees and forests

Definition

- A graph G without a cycle is called forest.
- A connected graph G without a cycle is called tree.

Definitions
Shortest Path
Spanning Tree

Characterization of trees

Theorem
Let $G=(V, E)$ undirected graph with $|V|=n$. Then the following are equivalent:

Previously on Definitions

Shortest Path Spanning Tree
(b) G is cycle-free and has $n-1$ edges.
©) G is connected and has $n-1$ edges.
(d) G is minimally connected (removing an edge \Rightarrow not connected anymore).
(©) G is maximally cycle-free (adding an edge \Rightarrow cycle).
(c) G contains a unique $u-v$ path for any pair of vertices $u, v \in V$.

Spanning trees

Definition

Let $G=(V, E)$ undirected graph. $T=\left(V, E^{\prime}\right)$ with $E^{\prime} \subseteq E$ is a spanning tree of G iff T is a tree.

Lemma
G is connected iff it contains a spanning tree.
Theorem
Let $K_{n}=(V, E)$ be the complete graph with $|V|=n$ vertices, i.e., for any $u, v \in V$ the edge $\{u, v\} \in E$ exists.
 Then the number of spanning trees in K_{n} is n^{n-2}.

Shortest Path

Combinatorial
Optimization

Previously on.
Useful
Definitions
Shortest Path
Spanning Tree

Finding Paths

Finding the minimum path length between two nodes is trivial.
\rightarrow BFS can be easily applied;
Finding the minimum path length between a node and all the others is also trivial.
\rightarrow BFS apply to each node individually;

Challenge: finding the minimum-cost path from a node to all the other in a weighted graph.

Flow Network

A weighted graph is a graph where all the edges has a specific value associated to
Combinatorial Optimization

Definition (Flow network)
A tuple $G=(V, E, f)$ is said to be a flow network if (V, E) where for every edge $(u, v) \in E$ we have an associated positive integer flow value $f_{u v}$.

It also satisfying conservation of flow for every $v \in V \backslash\{s, t\}$, where s is an unique source and t is unique sink.

$$
\begin{equation*}
\sum_{(u, v) \in E} f_{u v}=\sum_{(v, w) \in E} f_{v w} \tag{1}
\end{equation*}
$$

General Idea

Goal: from a given node, what are the shortest path to each of the other vertices. Unfortunately, BFS will not suffice.

Shortest path may not have the fewest edges.
Alternative: Dijkstra's algolrithm.

Dijkstra

Edsger Dijkstra (1930-2002)

Combinatorial
Optimization

Previously on
Useful
Definitions

Shortest Path

Figure: Edsger W. Dijkstra
"Simplicity is prerequisite for reliability."

General Idea

(1) Iteratively increase the "set of nodes with known shortest distances";
(2) Any node outside this set will have a "best distance so far";

Combinatorial Optimization

Previously on
(3) Update the "best distance so far" until add all nodes to set.

Dijkstra's Algorithm

Algorithm: Dijkstra's Algorithm - Preparation
Input: undirected, connected graph G, weights $c: E(G) \rightarrow \mathbb{R}$, nodes V, source s
$1 d_{v}$ distance to reach node v
$2 p_{v}$ node predecessor to node v
$3 Q \leftarrow \emptyset$ set of "unkown distance" nodes.
4 for each node v in V do
$5 \quad d_{v} \leftarrow \infty$
$6 \quad p_{v} \leftarrow F A L S E$
$7 \quad$ add v in Q
$8 d_{s} \leftarrow 0$

Dijkstra's Algorithm

Algorithm: Dijkstra's Algorithm - Calculation

Output: d_{v}, p_{v}
1 while $Q \neq \emptyset$ do
$2 \quad u \leftarrow$ node in Q with $\min d_{u}$
Combinatoria
Optimization

Previously on.
Useful
Definitions
$d_{v} \leftarrow a l t$
$p_{v} \leftarrow u$
remove u from Q
for each neighbor v of u still in Q do

$$
d \leftarrow d_{u}+c_{u v}
$$

$$
\text { if } \text { alt }<d_{v} \text { then }
$$

Spanning Tree

Combinatoria
Optimization

Previously on
Useful
Definitions
Shortest Path
Spanning Tree

Minimal spanning trees

Minimum Spanning Tree Problem

Instance: An undirected, connected graph G, weights $c: E(G) \rightarrow \mathbb{R}$.
Task: Find a spanning tree T in G of minimum weight.

Optimality conditions

Theorem
Let (G, c) be an instance of the MST problem and T a spanning tree in G. Then the following are equivalent:
(a) T is optimal.
(๑) For every $e=\{x, y\} \in E(G) \backslash E(T)$, no edge on the $x-y$ path in T has

Combinatorial Optimization

Previously on.
Useful
Definitions higher cost than e.
©) For every $e \in E(T)$, e is a minimum cost edge of $\delta(V(C))$, where C is a connected component of $T-e$.
(d) We can order $E(T)=\left\{e_{1}, \ldots, e_{n-1}\right\}$ such that for each $i \in\{1, \ldots, n-1\}$ there exists a set $X \subseteq V(G)$ such that e_{i} is a minimum cost edge of $\delta(X)$ and $e_{j} \notin \delta(X)$ for all $j \in\{1, \ldots, i-1\}$.

Optimality conditions

$$
\begin{gathered}
\delta(X)=\{\{u, v\} \in E: u \in X, v \notin x\} \\
\text { edges from } X \text { to } V(G) \backslash X
\end{gathered}
$$

Two algorithms

Theorem
Let $G=(V, E)$ undirected graph with $|V|=n$. Then the following are equivalent:
a) G is a tree, i.e., connected and cycle-free.
d) G is minimally connected (removing an edge \Rightarrow not connected anymore).
e) G is maximally cycle-free (adding an edge \Rightarrow cycle).

Kruskal

- guaranteed to be cycle-free
- greedily add edges until maximally cycle-free

Prim

- grow one connected component
- greedily add edges until minimally connected

Kruskal's algorithm

Algorithm: Kruskal's Algorithm
Input: undirected, connected graph G, weights $c: E(G) \rightarrow \mathbb{R}$
Output: spanning tree T of minimum weight
Combinatorial Optimization

```
            set T:=T+ e
```

6 return T

Kruskal's algorithm

Combinatorial Optimization

Previously on.

Useful

Definitions

Shortest Path

Test:

$$
\begin{aligned}
& E(T)=\emptyset E(T)=\left\{e_{1}\right\} \\
& E(T)=\left\{e_{1}, e_{2}\right\} E(T)=\left\{e_{1}, e_{2}, e_{3}\right\} \\
& E(T)=\left\{e_{1}, e_{2}, e_{3}, e_{5}\right\} \\
& E(T)=\left\{e_{1}, e_{2}, e_{3}, e_{5}, e_{6}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& e_{1}=\left\{v_{1}, v_{3}\right\} \boldsymbol{\checkmark} e_{2}=\left\{v_{5}, v_{6}\right\} \boldsymbol{\checkmark} \\
& e_{3}=\left\{v_{1}, v_{2}\right\} \boldsymbol{J} e_{4}=\left\{v_{2}, v_{3}\right\} \boldsymbol{X} \rightsquigarrow \text { cycle } \\
& e_{5}=\left\{v_{4}, v_{6}\right\} \boldsymbol{J} e_{6}=\left\{v_{3}, v_{6}\right\} \boldsymbol{\checkmark} \\
& e_{7}=\left\{v_{3}, v_{5}\right\} \boldsymbol{X} \rightsquigarrow \text { cycle } e_{8}=\left\{v_{2}, v_{4}\right\} \\
& \boldsymbol{x} \rightsquigarrow \text { cycle } e_{9}=\left\{v_{3}, v_{5}\right\} \boldsymbol{X} \rightsquigarrow \text { cycle }
\end{aligned}
$$

Kruskal's algorithm - Correctness

Algorithm: Kruskal's Algorithm
Input: undirected, connected graph G, weights $c: E(G) \rightarrow \mathbb{R}$
Output: spanning tree T of minimum weight
1 sort edges such that

$$
c\left(e_{1}\right) \leq c\left(e_{2}\right) \leq \ldots \leq c\left(e_{m}\right)
$$

2 set $T:=(V(G), \emptyset)$
3 for $i:=1$ to m do
4 if $T+e_{i}$ contains no cycle then
5
set $T:=T+e_{i}$

6 return T

- T is maximally cycle-free (no further edge can be added)
$\Rightarrow T$ is a tree
- for
$e_{i}=\{x, y\} \in E(G) \backslash E(T):$
- $T+e_{i}$ contains a cycle in line 4
- there exists a $x-y$ path in T at this point
- all edges in T have lower weight than e_{i} at this point

Kruskal's algorithm - Running time

Algorithm: Kruskal's Algorithm
Input: undirected, connected graph G, weights $c: E(G) \rightarrow \mathbb{R}$
Output: spanning tree T of minimum weight
1 sort edges such that

$$
c\left(e_{1}\right) \leq c\left(e_{2}\right) \leq \ldots \leq c\left(e_{m}\right)
$$

2 set $T:=(V(G), \emptyset)$
3 for $i:=1$ to m do
4 if $T+e_{i}$ contains no cycle then
$5 \quad\left\lfloor\right.$ set $T:=T+e_{i}$
6 return T

- sorting edges:
$O(m \log m)$
- loop lines 3-5: checking m times for cycles
- checking for cycle containing $e=\{u, v\}$
- DFS starting from u with at most n edges, check if v is reachable: $O(n)$
\rightsquigarrow total running time: $O(m n)$

Prim's algorithm

Algorithm: Prim's Algorithm
Input: undirected, connected graph G, weights $c: E(G) \rightarrow \mathbb{R}$
Output: spanning tree T of minimum weight
1 choose $v \in V(G)$
2 set $T:=(\{v\}, \emptyset)$
3 while $V(T) \neq V(G)$ do
4 choose an edge $e \in \delta_{G}(V(T))$ of minimum weight
5 set $T:=T+e$

6 return T

Prim's algorithm

Prim's algorithm

$$
\begin{aligned}
& V(T)=\left\{v_{1}\right\} \\
& E(T)=\emptyset V(T)=\left\{v_{1}, v_{3}\right\} \\
& E(T)=\left\{\left\{v_{1}, v_{3}\right\}\right\} V(T)=\left\{v_{1}, v_{3}, v_{2}\right\} \\
& E(T)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\}\right\} V(T)=\left\{v_{1}, v_{3}, v_{2}, v_{6}\right\} \\
& E(T)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{6}\right\}\right\} V(T)=\left\{v_{1}, v_{3}, v_{2}, v_{6}, v_{5}\right\} \\
& E(T)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{6}\right\},\left\{v_{5}, v_{6}\right\}\right\} V(T)=\left\{v_{1}, v_{3}, v_{2}, v_{6}, v_{5}, v_{4}\right\} \\
& E(T)=\left\{\left\{v_{1}, v_{3}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{6}\right\},\left\{v_{5}, v_{6}\right\},\left\{v_{4}, v_{6}\right\}\right\} \\
& \\
& \delta_{G}(V(T))= \\
& \left\{\left\{v_{1}, v_{2}\right\},\left\{v_{1}, v_{3}\right\}\right\} \quad\left\{\left\{v_{1}, v_{2}\right\},\left\{v_{2}, v_{3}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{6}\right\}\right\} \\
& \left\{\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{3}, v_{6}\right\}\right\} \\
& \left\{\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{3}, v_{5}\right\},\left\{v_{4}, v_{6}\right\},\left\{v_{5}, v_{6}\right\}\right\} \quad\left\{\left\{v_{2}, v_{4}\right\},\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{6}\right\}\right\}
\end{aligned}
$$

Summary running times MST

Kruskal
naive implementation most optimal
$O(m n)$
$O(m \log n)$

Prim
naive implementation $O\left(m+n^{2}\right)$
most optimal $\quad O(m \log n)$

Combinatorial
Optimization

Previously on.
Useful
Definitions
Shortest Path
Spanning Tree

A
thank you

