Week III

Overview

- ► Flow Network:
- Cut:
- Maximum Flow;
- Minimal Cut.

Definitions

Fernando Dias

fernando.dias@aalto.fi

Combinatorial Optimization

- ► A **flow network** is a **directed** graph where each edge has a **capacity** and each edge receives a **flow**, where the amount of flow allowed in each edge cannot surpass its capacity;
- A **cut** in graph theory corresponds to a **partition** of the nodes in a graph splitting them into **disjoint** subsets.

Problem (Maximum Flow Problem (MaxFlow))

Given a flow network represent as a digraph G = (v, E)with capacities u and unique source and unique sink s and t respectively, such that $s, t \in V$.

The goal is to find an s-t-flow of **maximum** value.

Problem (Minimum Cut Problem (MinCut))

Given a flow network represent as a digraph G = (v, E)with capacities u and unique source and unique sink s and t respectively, such that $s, t \in V$. The goal is to find an s-t-cut of **minimum capacity**.

Ford-Fulkerson's

```
Algorithm 1: FORD-FULKERSON ALGORITHM
  Input: digraph G = (V, E), capacities
          u: E \to \mathbb{Z}_+, s, t \in V
  Output: maximal s-t-flow f
1 set f(e) = 0 for all e \in E
<sup>2</sup> while there exists f-augmenting path in G_f do
    choose f-augmenting path P
3
4
    set \Delta_f(P) = \min_{a \in E(P)} u_f(a)
    augment f along P by \Delta_f(P)
5
    update G_f
6
7 return f
```

Emonds-Karp's

Algorithm 2: EDMONDS-KARP ALGORITHM **Input:** digraph G = (V, E), capacities

 $u: E \to \mathbb{R}_+, s, t \in V$

Output: maximal *s*-*t*-flow *f*

set
$$f(e) = 0$$
 for all $e \in E$

² while there exists f-augmenting path in G_f do

- choose *f*-augmenting path *P* with minimal 3 number of edges
- set $\Delta_f(P) = \min_{a \in E(P)} u_f(a)$ 4
- 5 augment *f* along *P* by $\Delta_f(P)$
- update G_f 6

7 return f

Maximum Flow ILP

max

s.t.

