

Lecture Notes - Week III

Flows

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

CHAPTER 1 Flows and Cuts

In **graph theory**, **flow network** is a **directed** graph G = (V, E) where each edge has a **capacity** $u: E \to \mathbb{R}_+$ and each edge receives a **flow** $f: E \to \mathbb{R}_+$, where the amount of flow allowed in each edge cannot surpass its capacity $(f(e) \le u(e), e \in E)$. Hence, the *excess* of a flow f at $v \in V$:

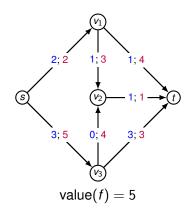
$$\operatorname{\mathsf{ex}}_f(v) := \sum_{e \in \delta^-(v)} f(e) - \sum_{e \in \delta^+(v)} f(e)$$

 $\delta^-(v) = \{e \in E : e = (u, v)\}$ incoming edges

 $\delta^+(v) = \{e \in E \colon e = (v, u)\}$ outgoing edges

The flow in this type of graph also have the satisfy **flow conservation** which state that:

Definition 1 The total net flow entering a node v is zero for **all nodes** in the network except the source s and sink t.



A **cut** in graph theory corresponds to a **partition** of the nodes in a graph splitting them into **disjoint subsets**. For example, see Figure 1.1.

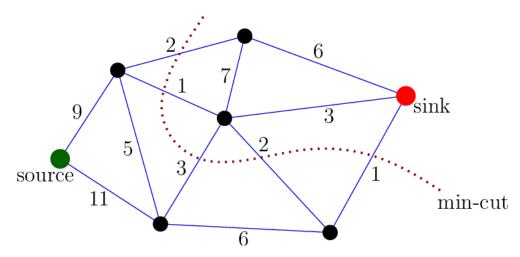


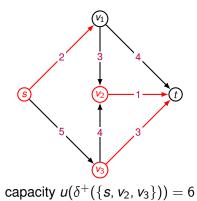
Figure 1.1: Example of a cut in a graph

A specific type of cut is a *s-t-cut* $\delta^+(S)$ where $S \subseteq V$ and $s \in S$, $t \notin S$. Therefore:

$$\delta^+(S) = \{e = (u, v) \in E \colon u \in S, v \in V \setminus S\}$$

The capacity of such cut can be expressed as:

$$u(\delta^+(S)) = \sum_{e \in \delta^+(S)} u(e)$$



1.1 WEEK DUALITY

Using the definitions of flows and cuts, we can establish the following conclusion:

Lemma 1 For any $S \subseteq V$ with $s \in S$, $t \notin S$ and any s-t-flow f:

1.
$$value(f) = \sum_{e \in \delta^+(S)} f(e) - \sum_{e \in \delta^-(S)} f(e)$$

2. value(
$$f$$
) $\leq u(\delta^+(S))$

Proof 1 From the flow conservation for $v \in S \setminus \{s\}$:

$$\begin{aligned} \text{value}(f) &= -\mathsf{ex}_f(s) \\ &= \sum_{e \in \delta^+(s)} f(e) - \sum_{e \in \delta^-(s)} f(e) \\ &= \sum_{v \in S} \left(\sum_{e \in \delta^+(v)} f(e) - \sum_{e \in \delta^-(v)} f(e) \right) \\ &= \sum_{e \in \delta^+(S)} f(e) - \sum_{e \in \delta^-(S)} f(e) \end{aligned}$$

This can also expressed as:

$$0 \le f(e) \le u(e)$$

CHAPTER 2

Maximum Flows and Minimal Cuts

Once again, the task of find which flow and which cuts a graph can accept is **not challenging**. However, whenever **optimal values** (either minimal or maximal) are required, the configuration of such problems becomes challenging.

First, we state both problems:

Problem 1 Maximum Flow Problem (MaxFlow) Given a flow network represent as a digraph G = (v, E) with capacities u and unique source and unique sink s and t respectively, such that $s, t \in V$. The goal is to find an s-t-flow of **maximum** value.

Problem 2 Minimum Cut Problem (MinCut) Given a flow network represent as a digraph G = (v, E) with capacities u and unique source and unique sink s and t respectively, such that $s, t \in V$. The goal is to find an s-t-cut of **minimum capacity**.

Although those two problems might seem **unrelated** or even **contradictory**, they can be directly connected via the following lemmas:

Lemma 2 Let G = (V, E) be a digraph with capacities u and s, $t \in V$. Then

$$\max\{\text{value}(f): f \text{ } s\text{-}t\text{-flow}\} \leq \min\{u(\delta^+(S)): \delta^+(S) \text{ } s\text{-}t\text{-cut}\}.$$

Lemma 3 Let G = (V, E) be a digraph with capacities u and $s, t \in V$. Let f be an s-t-flow and $\delta^+(S)$ be an s-t-cut. If

$$value(f) = u(\delta^+(S))$$

then f is a maximal flow and $\delta^+(S)$ is a minimal cut.

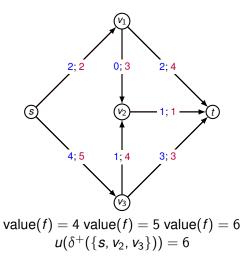
Hence, a single algorithm is enough to solve **both** problems.

Remark: in combinatorics, many problems can be expressed as another. This is a key point for future lectures.

2.1 IDEA FOR FINDING MAXIMAL FLOWS

If there exists non-saturated s-t-path (f(e) < u(e) for all edges), then the flow f can be increased along this path. This means that if the path is not satured, more flow can be put into that path.

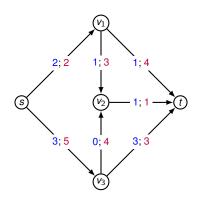
However, non-existence of such a path does not guarantee optimality.

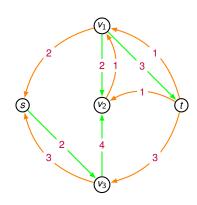


In this context, we introduced another concept: **residual graphs**. Considering that G = (V, E) is a digraph with capacities u, f be an s-t-flow, a residual graph is the graph $G_f = (V, E_f)$ with $E_f = E_+ \cup E_-$ and capacity u_f :

- forward edges $+e \in E_+$: for $e = (u, v) \in E$ with f(e) < u(r), add +e = (u, v) with residual capacity $u_f(+e) = u(e) - f(e)$
- backward edges $-e \in E_-$: for $e = (u, v) \in E$ with f(e) > 0, add -e = (v, u) with residual capacity $u_f(-e) = f(e)$

Remark: G_f can have parallel edges even if G is simple.





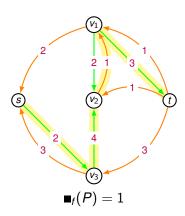
In addition, we can also define *f*-augmenting paths:

Definition 2 An s-t-path P in G_f is called augmenting path. The value:

$$\blacksquare_f(P) = \min_{a \in E(P)} u_f(a)$$

is called residual capacity of P.

Remark: $\blacksquare_f(P) > 0$ as $u_f(a) > 0$ for all $a \in E_f$.



With this definition in mind, the following theorem is established.

Theorem 1 An s-t-flow is optimal if and only if there exists no f-augmenting path.

Proof idea:

⇒ *P f*-augmenting path. Construct *s*-*t*-flow

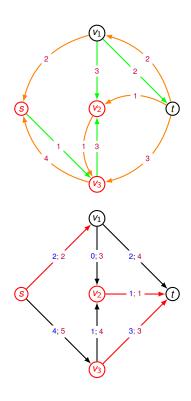
$$\bar{f}(e) = \begin{cases} f(e) + \blacksquare_f(P) & \text{if } + e \in E(P) \\ f(e) - \blacksquare_f(P) & \text{if } - e \in E(P) \\ f(e) & \text{otherwise} \end{cases}$$

with higher value.

Proof idea:

 \Leftarrow There exists no f-augmenting path. Consider s-t-cut $\delta^+(S)$ defined by connected component S of s in G_f . Show that

$$value(f) = u(\delta^+(S)).$$



With this previous theorem in mind, we can conclude that:

Theorem 2 (Ford and Fulkerson, 1956; Dantzig and Fulkerson, 1956)

In a digraph G with capacities u, the maximum value of an s-t-flow equals the minimum capacity of an s-t-cut.

CHAPTER 3

Finding Maximal Flows

The most common algorithm for maximum flow was first published by L. R. Ford Jr. and D. R. Fulkerson in in 1956. It is commonly known as **Ford-Fulkerson algorithm**. The algorith is as follows:

```
Algorithm: FORD-FULKERSON ALGORITHM
```

Input: digraph G = (V, E), capacities $u: E \to \mathbb{Z}_+$, $s, t \in V$

Output: maximal s-t-flow f 1 set f(e) = 0 for all $e \in E$

2 while there exists f-augmenting path in G_f do

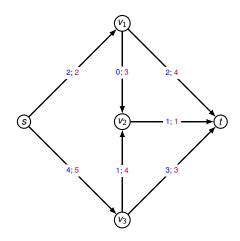
choose *f*-augmenting path *P*

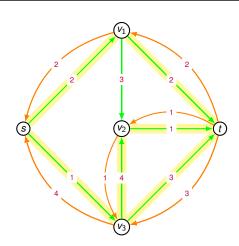
4 set $\blacksquare_f(P) = \min_{a \in E(P)} u_f(a)$

augment f along P by $\blacksquare_f(P)$

6 update G_f

7 return f





$$\blacksquare_f(P) = 3$$

$$■_f(P) = 2$$

$$\blacksquare_f(P)=1$$

Analysing the previous algorithms allow us to infer a few details. Lines 1, 4, 5 and 6 can be calculated in **linear time** in terms the number of edges m in a graph. An efficient algorithm to apply in Line 3 is actually **DFS** (Depth-First Search) which is also **linear** in the number of edges m. The *WHILE* loop requires up to $n \cdot U$, where n is the number of nodes and U is $max_{e \in E}u(e)$. The entire algorithm has a runtime proportional to $O(n \cdot m \cdot U)$ (**polynomial**).

Remark: flow *f* is integer.

An improved version of this algorithm allows for real values in the capacities. In this case, for non-integer capacities, \blacksquare_f can be arbitrarily small when P is not chosen carefully, resulting in a runtime $O(n \cdot m^2)$.

The resulting algorithm represent such adaption:

```
Algorithm: EDMONDS-KARP ALGORITHM
```

Input: digraph G = (V, E), capacities $u: E \to \mathbb{R}_+$, $s, t \in V$

Output: maximal s-t-flow f 1 set f(e) = 0 for all $e \in E$

2 while there exists f-augmenting path in G_f do

choose f-augmenting path P with minimal number of edges 3

set $\blacksquare_f(P) = \min_{a \in E(P)} u_f(a)$

augment f along P by $\blacksquare_f(P)$ 5

update G_f 6

7 return f

Last but not least, there is also linear programming formulation for this problem. See full model below:

$$\sum_{e \in \delta^+(s)} f_e \tag{3.1a}$$

max
$$\sum_{e \in \delta^+(s)} f_e \tag{3.1a}$$
 s.t.
$$\sum_{e \in \delta^-(v)} f_e - \sum_{e \in \delta^+(v)} f_e = 0 \qquad v \in V \setminus \{s,t\} \tag{3.1b}$$

$$f_e \le u(e)$$
 $e \in E$ (3.1c)

$$f_e \ge 0$$
 $e \in E$ (3.1d)

The flow conservation flow conversation constraints (3.1b) are part of many LPs and IPs, e.g. for shortest path. The coefficient matrix of flow conversation constraints is node-arc-incidence matrix and it is totally unimodular, i.e., all extreme points are integer.