Lecture III - Flows

${ }^{1}$ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

January 8, 2024

Aalto University

Previously on..

- Shortest Path: Dijkstra;
- Minimum Spanning Tree: Prim and

PREVIOUSLY ON...

 Kruskal
Flow

- $G=(V, E)$ digraph with capacities $u: E \rightarrow \mathbb{R}_{+}$
- flow $f: E \rightarrow \mathbb{R}_{+}$with $f(e) \leq u(e), e \in E$
- excess of a flow f at $v \in V$:

$$
\operatorname{ex}_{f}(v):=\sum_{e \in \delta^{-}(v)} f(e)-\sum_{e \in \delta^{+}(v)} f(e)
$$

$\delta^{-}(v)=\{e \in E: e=(u, v)\}$ incoming edges
$\delta^{+}(v)=\{e \in E: e=(v, u)\}$ outgoing edges

- f satisfies flow conversation rule at v if $\mathrm{ex}_{f}(v)=0$
- circulation: $\operatorname{ex}_{f}(v)=0$ for all $v \in V$
- s-t-flow: $\operatorname{ex}_{f}(s) \leq 0, \operatorname{ex}_{f}(v)=0$ for all $v \in V \backslash\{s, t\}$

$\operatorname{value}(f)=5$
- value of s-t-flow: value $(f)=-\operatorname{ex}_{f}(s)=\operatorname{ex}_{f}(t)$
- $G=(V, E)$ digraph with capacities
$u: E \rightarrow \mathbb{R}_{+}$
- s-t-cut $\delta^{+}(S)$: for $S \subseteq V$ with $s \in S, t \notin S$
$\delta^{+}(S)=\{e=(u, v) \in E: u \in S, v \in V \backslash S\}$
- capacity of an s-t-cut:

$$
u\left(\delta^{+}(S)\right)=\sum_{e \in \delta^{+}(S)} u(e)
$$

Weak duality

Proof.

(1) flow conservation for $v \in S \backslash\{s\}$:

Lemma

For any $S \subseteq V$ with $s \in S, t \notin S$ and any s-t-flow f :
(1) value $(f)=$

$$
\sum_{e \in \delta^{+}(S)} f(e)-\sum_{e \in \delta^{-}(S)} f(e)
$$

(2) value $(f) \leq u\left(\delta^{+}(S)\right)$

$$
\begin{aligned}
\operatorname{value}(f) & =-\operatorname{ex}_{f}(s) \\
& =\sum_{e \in \delta^{+}(s)} f(e)-\sum_{e \in \delta^{-}(s)} f(e) \\
& =\sum_{v \in S}\left(\sum_{e \in \delta^{+}(v)} f(e)-\sum_{e \in \delta^{-}(v)} f(e)\right) \\
& =\sum_{e \in \delta^{+}(S)} f(e)-\sum_{e \in \delta^{-}(S)} f(e)
\end{aligned}
$$

$$
\text { use } 0 \leq f(e) \leq u(e)
$$

(2) use $0 \leq f(e) \leq u(e)$

Maximum Flow Problem (MaxFlow)
Instance: digraph $G=(v, E)$, capacities $u, s, t \in V$
Task: Find an s - t-flow of maximum value.

Minimum Cut Problem (MinCut)
Instance: digraph $G=(v, E)$, capacities $u, s, t \in V$ Task: Find an s - t-cut of minimum capacity.

Relationship between MaxFlow and MinCut

Lemma
Let $G=(V, E)$ be a digraph with capacities u and $s, t \in V$. Then

$$
\max \{\operatorname{value}(f): f s \text { - } t \text {-flow }\} \leq \min \left\{u\left(\delta^{+}(S)\right): \delta^{+}(S) s \text { - } t \text {-cut }\right\} .
$$

Lemma
Let $G=(V, E)$ be a digraph with capacities u and $s, t \in V$. Let f be an s-t-flow and $\delta^{+}(S)$ be an s-t-cut. If

$$
\operatorname{value}(f)=u\left(\delta^{+}(S)\right)
$$

then f is a maximal flow and $\delta^{+}(S)$ is a minimal cut.

Idea for finding maximal flows

- If there exists non-saturated s - t-path ($f(e)<u(e)$ for all edges), then the flow f can be increased along this path.
? Non-existence of such a path does not guarantee optimality.

Residual Graph

- $G=(V, E)$ a digraph with capacities u, f be an s-t-flow
- residual graph $G_{f}=\left(V, E_{f}\right)$ with $E_{f}=E_{+} \cup E_{-}$and capacity u_{f} :
- forward edges $+e \in E_{+}$: for $e=(u, v) \in E$ with $f(e)<u(r)$ add $+e=(u, v)$ with residual capacity $u_{f}(+e)=u(e)-f(e)$
- backward edges $-e \in E_{-}$: for $e=(u, v) \in E$ with $f(e)>0$ add $-e=(v, u)$ with residual capacity $u_{f}(-e)=f(e)$
Q้ G_{f} can have parallel edges even if G is simple

f-augmenting paths

Definition

- An s-t-path P in G_{f} is called augmenting path.
- The value

$$
\Delta_{f}(P)=\min _{a \in E(P)} u_{f}(a)
$$

is called residual capacity of P.
© $\Delta_{f}(P)>0$ as $u_{f}(a)>0$ for all $a \in E_{f}$

Augmenting path theorem

Theorem

An s-t-flow is optimal if and only if there exists no f-augmenting path.

Proof idea

$\Rightarrow P f$-augmenting path. Construct s - t-flow

$$
\bar{f}(e)= \begin{cases}f(e)+\Delta_{f}(P) & \text { if }+e \in E(P) \\ f(e)-\Delta_{f}(P) & \text { if }-e \in E(P) \\ f(e) & \text { otherwise }\end{cases}
$$

with higher value.

Proof idea

\Leftarrow There exists no f-augmenting path. Consider s - t-cut $\delta^{+}(S)$ defined by connected component S of s in G_{f}. Show that

$$
\operatorname{value}(f)=u\left(\delta^{+}(S)\right)
$$

Augmenting path theorem

Combinatorial
Optimization

MaxFlow-MinCut theorem

Theorem (Ford and Fulkerson, 1956; Dantzig and Fulkerson, 1956)
In a digraph G with capacities u, the maximum value of an s - t-flow equals the minimum capacity of an s-t-cut.

Ford-Fulkerson Algorithm

Algorithm: Ford-Fulkerson Algorithm
Input: digraph $G=(V, E)$, capacities $u: E \rightarrow \mathbb{Z}_{+}, s, t, \in V$
Output: maximal s - t-flow f
1 set $f(e)=0$ for all $e \in E$
2 while there exists f-augmenting path in G_{f} do
3 choose f-augmenting path P
set $\Delta_{f}(P)=\min _{a \in E(P)} u_{f}(a)$
augment f along P by $\Delta_{f}(P)$ update G_{f}

7 return f

Ford-Fulkerson Algorithm

$$
\begin{aligned}
& \Delta_{f}(P)=3 \\
& \Delta_{f}(P)=2 \\
& \Delta_{f}(P)=1
\end{aligned}
$$

Ford-Fulkerson Algorithm - Analysis

Algorithm: Ford-Fulkerson Algo-

RITHM

Input: digraph $G=(V, E)$, capacities

$$
u: E \rightarrow \mathbb{Z}_{+}, s, t, \in V
$$

Output: maximal s - t-flow f
1 set $f(e)=0$ for all $e \in E$
2 while there exists f-augmenting path in

$$
G_{f} \text { do }
$$

choose f-augmenting path P set $\Delta_{f}(P)=\min _{a \in E(P)} u_{f}(a)$ augment f along P by $\Delta_{f}(P)$ update G_{f}

7 return f

- set $U=\max _{e \in E} u(e)$
- line 1, 5, 6: $O(m)$
- line 3: DFS $O(m)$
- line 4: $O(m)$, $\Delta_{f}(P) \in \mathbb{Z}_{+}$
- iterations while loop in line 2: $O(n \cdot U)$ (value $(f) \leq n \cdot U)$
$\Rightarrow O(n \cdot m \cdot U)$
\&) flow f is integer

Edmonds-Karp Algorithm

Algorithm: EdmOnds-Karp Algo-
RITHM
Input: digraph $G=(V, E)$, capacities

$$
u: E \rightarrow \mathbb{R}_{+}, s, t, \in V
$$

Output: maximal s - t-flow f
1 set $f(e)=0$ for all $e \in E$
2 while there exists f-augmenting path in

G_{f} do

3 choose f-augmenting path P with minimal number of edges
$4 \quad$ set $\Delta_{f}(P)=\min _{a \in E(P)} u_{f}(a)$
5 augment f along P by $\Delta_{f}(P)$
6 update G_{f}
7 return f

Linear programming formulation

$$
\begin{array}{cl}
\max & \sum_{e \in \delta^{+}(s)} f_{e} \\
\text { s.t. } \sum_{e \in \delta^{-}(v)} f_{e}-\sum_{e \in \delta^{+}(v)} f_{e}=0 & v \in V \backslash\{s, t\} \\
& f_{e} \leq u(e) \\
& e \in E \\
f_{e} \geq 0 & e \in E
\end{array}
$$

- flow conversation constraints are part of many LPs and IPs, e.g. for TSP
- coefficient matrix of flow conversation constraints is node-arc-incidence matrix
- coefficient matrix is totally unimodular, i.e., all extreme points are integer
\Rightarrow you can find integer solutions by linear programming

A
thank you

