Week IV

Overview

- Matchings;
- Maximal vs Maximum;
- Matching and Flow.

Definitions

- $M \subset E$ is called *matching* if all $e \in M$ are pairwise disjoint, i.e., if the endpoints are all different
- M ⊂ E is a maximum matching in G if M is a matching with highest cardinality, i.e.,

 $|M'| \le |M|$ for all matchings M'

Definition (Maximal Matching)

No other edge can be added to this match;

Definition (Maximum Matching)

A match with the largest possible number of edges;

Definition (Maximum vs Maximal)

A maximum matching is the maximal matching with the maximum number of edges.

Maximum Matching	Maximu
Algorithm 1: MAXIMUM MATCHING	
Input: undirected graph $G = (V, E)$	
Output: maximum matching <i>M</i>	max
$1 \text{ set } M = \emptyset$	
² while there exists <i>M</i> -augmenting path in <i>G</i> do	s.t.
3 choose <i>M</i> -augmenting path <i>P</i>	
4 set $M = (M \setminus E(P)) \cup (E(P) \setminus M)$	
5 return <i>M</i>	
	_
Maximum Matching - Bipartite	
Algorithm 2: MAXIMUM MATCHING BIPARTITE	
Graphs	
Input: undirected bipartite graph $G = (V, E)$	
Output: maximum matching M	
1 set $M = \emptyset$	
2 construct G'	
3 while there exists s-t-path in G' do	
4 choose <i>s</i> - <i>t</i> -path <i>P</i>	
s set $M = (M \setminus E(P)) \cup (E(P) \setminus M)$	

- 6 update G'
- 7 return M

Fernando Dias

fernando.dias@aalto.fi Combinatorial Optimization

um Matching ILP

