Lecture Notes - Week IV

Matching

Fernando Dias, Philine Schiewe and Piyalee Pattanaik

CHAPTER

1

Matching

As always, a definition at first:

Definition 1 Matching in an undirected graph is a set of edges without common vertices.
Also known as independent edge set, this problem goal is to find a subset of the edges as a matching if each node appears in at most one edge of that matching.

From an undirected graph $G=(V, E), M \subset E$ is called matching if all $e \in M$ are pairwise disjoint, i.e., if the endpoints are different. In addition, $M \subset E$ is a maximum matching in G if M is a matching with highest cardinality, i.e.,

$$
\left|M^{\prime}\right| \leq|M| \text { for all matchings } M^{\prime}
$$

Some illustrations as example:

Assignment different workers to different tasks in order that there is no conflict or overlapping.

Setting pairs for homework assignments.
For this problem, a simple integer linear programming formulation can be calculated:

$$
\text { Maximize } \sum_{e \in E} x_{e}
$$

Subject to:

$$
\begin{array}{ll}
\sum_{e \in \delta(v)} x_{e} \leq 1 & \forall v \in V \\
x_{i j} \in\{0,1\} & \forall e \in E
\end{array}
$$

where $\delta(v)$ is the set of incident edges of $v \in V$, such that:

$$
\delta(v)=\{e \in E: e=\{v, w\}\}
$$

Like flow problems, we can also define M-augmenting paths. Let $G=(V, E)$ be an undirected graph and $M \subseteq E$ matching. A node $v \in V$ is said to be covered by M if $v \in e$ for some $e \in M$ and it is exposed by M if $v \notin e$ for all $e \in M$.

With those, two types of paths can be defined M-alternating path P, where edges $E(P)$ are alternately in M and not in M (or not in M and in M) and M-augmenting path P that is a special type of M-alternating path, where the first and last vertex exposed.

Remark: M-augmenting paths have odd number of edges.

According to Berge's Theorem:

Theorem 1 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the maximum if and only if there is no M -augmenting path.

Proof 1 Proof idea \Rightarrow : By contraposition: Let $P=\left(v_{0}, e_{1}, \ldots, e_{k}, v_{k}\right)$ be an M-augmenting path.

- by definition: v_{0}, v_{k} exposed

$$
\Rightarrow|E(P) \backslash M|=|E(P) \cap M|+1
$$

$\Rightarrow M^{\prime}=(M \backslash E(P)) \cup(E(P) \backslash M)$ is matching with $\left|M^{\prime}\right|=|M|+1$
$\Rightarrow M$ not maximum

From this theorem, we can derive a few lemmas, such as

Lemma 1 Let G be a graph with two matchings M, M^{\prime}. Let $G^{\prime}=\left(V, E^{\prime}=M ■ M^{\prime}\right)$, with symmetric difference

$$
M \backsim M^{\prime}=\left(M \cup M^{\prime}\right) \backslash\left(M \cap M^{\prime}\right)
$$

Then, the connected components of G^{\prime} are

- isolated vertices
- cycles C with $|E(C)| \in 2 \mathbb{N}$ where edges in C are alternately in M and M^{\prime}
- paths $P=\left(v_{0}, e_{1}, \ldots, e_{k}, v_{k}\right)$ where edges are alternately in M and M^{\prime}

graph G

graph G^{\prime}
Proof 2 Proof idea: Let M, M^{\prime} matchings:

$$
\begin{aligned}
& |\{e \in M: v \in e\}| \leq 1, v \in V \\
& \left|\left\{e \in M^{\prime}: v \in e\right\}\right| \leq 1, v \in V \\
\Rightarrow & \left|\left\{e \in E^{\prime}: v \in e\right\}\right| \leq 2, v \in V
\end{aligned}
$$

If $g_{G^{\prime}}(v)=\left|\left\{e \in E^{\prime}: v \in e\right\}\right|=2: \exists!e \in M: v \in e$ and $\exists!e \in M^{\prime}: v \in e$.

- isolated vertices $v \rightsquigarrow g_{G^{\prime}}(v)=0$
- cycles C with $|E(C)| \in 2 \mathbb{N} \rightsquigarrow g_{G^{\prime}}(v)=2$

- paths $P=\left(v_{0}, e_{1}, \ldots, e_{k}, v_{k}\right) \rightsquigarrow g_{G^{\prime}}\left(v_{0}\right)=0=g_{G^{\prime}}\left(v_{k}\right)=1, g_{G^{\prime}}\left(v_{i}\right)=2,1 \leq i \leq k-1$

Another way to prove the same theorem is listed below:
Theorem 2 (Petersen (1891), Berge (1957)) Let G be a graph with some matching M. Then M is the maximum if and only if there is no M -augmenting path.

Proof 3 Proof idea:

By contraposition: Let M^{\prime} be a matching with $\left|M^{\prime}\right|>|M|$.
Construct G^{\prime}.

$$
\begin{aligned}
\left|M^{\prime}\right|>|M| & \Rightarrow\left|E^{\prime} \cap M^{\prime}\right|>\left|E^{\prime} \cap M\right| \\
& \Rightarrow \exists P=\left(v_{0}, e_{1}, \ldots, e_{k}, v_{k}\right) \text { with } e_{1} \in M^{\prime}, e_{k} \in M^{\prime} \\
& \Rightarrow v_{0}, v_{k} \text { exposed by } M \\
& \Rightarrow P M \text {-augmenting path }
\end{aligned}
$$

CHAPTER

Maximum Matching

With all of this in mind, the resulting algorithm can be expressed:

```
Algorithm: Maximum Matching
Input: undirected graph \(G=(V, E)\)
Output: maximum matching \(M\)
set \(M=\emptyset\)
while there exists \(M\)-augmenting path in \(G\) do
    choose \(M\)-augmenting path \(P\)
    set \(M=(M \backslash E(P)) \cup(E(P) \backslash M)\)
return \(M\)
```

In this algorithm, up to $\frac{|V|}{2}$ iterations are required. There is no obvious way to find an M-augmenting path. However, for bipartite graphs, the easier way is to find s - t-path in auxiliary graphs, while in general graphs, Edmond's blossom algorithm is the best approach. Nevertheless, such an algorithm is highly complex and has a polynomial runtime.

However, the challenge still remains on finding M-alternating paths. For bipartite graph $G=(V, E)$ with:

- $V=A \cup B, A \cap B=\emptyset$
- $E \subseteq\{\{a, b\}: a \in A, b \in B\}$

The easier approach is to construct auxiliary directed graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with:

$$
\begin{aligned}
V^{\prime}= & V \cup\{s, t\}, \quad s, t \notin V \\
E^{\prime}= & \{(b, a):\{a, b\} \in M, a \in A, b \in B\} \\
& \cup\{(a, b):\{a, b\} \in E \backslash M, a \in A, b \in B\} \\
& \cup\{(s, a): a \text { exposed, } a \in A\} \\
& \cup\{(b, t): b \text { exposed, } b \in B\}
\end{aligned}
$$

Then, $\exists M$-augmenting path in G if and only if $\exists s$ - t-path in G^{\prime}.

The resulting algorithm encapsulates this procedure:

```
Algorithm: Maximum Matching Bipartite Graphs
Input: undirected bipartite graph \(G=(V, E)\)
Output: maximum matching \(M\)
set \(M=\emptyset\)
construct \(G^{\prime}\)
while there exists s-t-path in \(G^{\prime}\) do
    choose s-t-path \(P\)
    set \(M=(M \backslash E(P)) \cup(E(P) \backslash M)\)
    update \(G^{\prime}\)
return \(M\)
```

In order to construct G^{\prime}, it takes up to $O(n+m)$, where $n=|V|$ and $m=|E|$, due to no isolated nodes in G. The remaining $\frac{n}{2}$ iterations are divided into:

- finding $P: O(m)$
- updating $M: O(n)$
- updating $G^{\prime}: O(n)$

The final runtime is $O(n m)$.

2.1 CONNECTION TO MAXFLOW

Solving matching can also be formulated as solving maximum flow. By constructing an auxiliary directed graph $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ with:

$$
\begin{aligned}
V^{\prime \prime}= & V \cup\{s, t\}, \quad s, t \notin V \\
E^{\prime \prime}= & \{(a, b):\{a, b\} \in E, a \in A, b \in B\} \\
& \cup\{(s, a): a \in A\} \\
& \cup\{(b, t): b \in B\}
\end{aligned}
$$

and capacity $u(e)=1$ for all $e \in E^{\prime \prime}$. With that, $G^{\prime \prime}$ has maximal flow with value k if and only if G has a maximum matching of cardinality k.

