Lecture IV - Matching

${ }^{1}$ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

January 8, 2024

Aalto University

Previously on..

- Shortest Path: Dijkstra;
- Minimum Spanning Tree: Prim and

PREVIOUSLY ON...

 Kruskal
Motivation

assigning jobs to workers

finding pairs for homework assignment

Combinatorial

Optimization

Previously on..

Definition

- $G=(V, E)$ undirected graph
- $M \subset E$ is called matching if all $e \in M$ are pairwise disjoint, i.e., if the endpoints are all different
- $M \subset E$ is a maximum matching in G if M is a matching with highest cardinality, i.e.,

$$
\left|M^{\prime}\right| \leq|M| \quad \text { for all matchings } M^{\prime}
$$

IP-formulation

$$
\begin{array}{ll}
\max & \sum_{e \in E} x_{e} \\
\text { s.t. } & \sum_{e \in \delta(v)} x_{e} \leq 1, \quad v \in V \\
& x_{e} \in\{0,1\}, \quad e \in E
\end{array}
$$

- incident edges of $v \in V$:

$$
\delta(v)=\{e \in E: e=\{v, w\}\}
$$

M-augmenting paths

- $G=(V, E)$ undirected graph, $M \subseteq E$ matching
- $v \in V$ is covered by M if $v \in e$ for some $e \in M$
- $v \in V$ is exposed by M if $v \notin e$ for all $e \in M$
- M-alternating path P : edges $E(P)$ are alternately in M and not in M (or not in M and in M)
- M-augmenting path $P: M$-alternating path with first and last vertex exposed

© M-augmenting paths have odd number of edges

Berge's Theorem

Theorem (Petersen (1891), Berge (1957))
Let G be a graph with some matching M. Then M is maximum if and only if there is no M-augmenting path.

Proof idea \Rightarrow :
By contraposition: Let $P=\left(v_{0}, e_{1}, \ldots, e_{k}, v_{k}\right)$ be an M-augmenting path.

- by definition: v_{0}, v_{k} exposed
$\Rightarrow|E(P) \backslash M|=|E(P) \cap M|+1$
$\Rightarrow M^{\prime}=(M \backslash E(P)) \cup(E(P) \backslash M)$ is matching with $\left|M^{\prime}\right|=|M|+1$
$\Rightarrow M$ not maximum

Lemma

Lemma

Let G be a graph with two matchings M, M^{\prime}. Let $G^{\prime}=\left(V, E^{\prime}=M \Delta M^{\prime}\right)$, with symmetric difference

$$
M \Delta M^{\prime}=\left(M \cup M^{\prime}\right) \backslash\left(M \cap M^{\prime}\right)
$$

Then the connected components of G^{\prime} are

- isolated vertices
- cycles C with $|E(C)| \in 2 \mathbb{N}$ where edges in C are alternately in M and M^{\prime}
- paths $P=\left(v_{0}, e_{1}, \ldots, e_{k}, v_{k}\right)$ where edges are alternately in M and M^{\prime}

graph G

graph G^{\prime}

Berge's Theorem

Proof idea:
M, M^{\prime} matchings:

$$
\begin{aligned}
& |\{e \in M: v \in e\}| \leq 1, v \in V \\
& \left|\left\{e \in M^{\prime}: v \in e\right\}\right| \leq 1, v \in V \\
\Rightarrow & \left|\left\{e \in E^{\prime}: v \in e\right\}\right| \leq 2, v \in V
\end{aligned}
$$

If $g_{G^{\prime}}(v)=\left|\left\{e \in E^{\prime}: v \in e\right\}\right|=2$:
$\exists!e \in M: v \in e$ and $\exists!e \in M^{\prime}: v \in e$.

Berge's Theorem

- isolated vertices $v \rightsquigarrow g_{G^{\prime}}(v)=0$
- cycles C with $|E(C)| \in 2 \mathbb{N} \rightsquigarrow g_{G^{\prime}}(v)=2$

- paths $P=\left(v_{0}, e_{1}, \ldots, e_{k}, v_{k}\right) \rightsquigarrow g_{G^{\prime}}\left(v_{0}\right)=0=g_{G^{\prime}}\left(v_{k}\right)=1, g_{G^{\prime}}\left(v_{i}\right)=2$, $1 \leq i \leq k-1$

Berge's Theorem

Theorem (Petersen (1891), Berge (1957))
Let G be a graph with some matching M. Then M is maximum if and only if there is no M-augmenting path.

Proof idea \Leftarrow :
By contraposition: Let M^{\prime} be a matching with $\left|M^{\prime}\right|>|M|$. Construct G^{\prime}.

$$
\begin{aligned}
\left|M^{\prime}\right|>|M| & \Rightarrow\left|E^{\prime} \cap M^{\prime}\right|>\left|E^{\prime} \cap M\right| \\
& \Rightarrow \exists P=\left(v_{0}, e_{1}, \ldots, e_{k}, v_{k}\right) \text { with } e_{1} \in M^{\prime}, e_{k} \in M^{\prime} \\
& \Rightarrow v_{0}, v_{k} \text { exposed by } M \\
& \Rightarrow P M \text {-augmenting path }
\end{aligned}
$$

graph G^{\prime}

General algorithm

Algorithm: Maximum Matching
Input: undirected graph $G=(V, E)$
Output: maximum matching M
1 set $M=\emptyset$
2 while there exists M-augmenting path in G do
3 choose M-augmenting path P
$4 \quad$ set $M=(M \backslash E(P)) \cup(E(P) \backslash M)$
5 return M

- at most $\frac{|V|}{2}$ iterations
- not obvious how to find an M-augmenting path
- for bipartite graphs: find s - t-path in auxiliary graph
- for general graphs: Edmond's blossom algorithm
- complex algorithm
- polynomial runtime

How to find M-alternating paths

- bipartite graph $G=(V, E)$ with
- $V=A \cup B, A \cap B=\emptyset$
- $E \subseteq\{\{a, b\}: a \in A, b \in B\}$
- for matching M construct auxiliary directed graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with

$$
\begin{aligned}
V^{\prime}= & V \cup\{s, t\}, \quad s, t \notin V \\
E^{\prime}= & \{(b, a):\{a, b\} \in M, a \in A, b \in B\} \\
& \cup\{(a, b):\{a, b\} \in E \backslash M, a \in A, b \in B\} \\
& \cup\{(s, a): a \text { exposed, } a \in A\} \\
& \cup\{(b, t): b \text { exposed, } b \in B\}
\end{aligned}
$$

- $\exists M$-augmenting path in G if and only if \exists
 s-t-path in G^{\prime}

Maximum matching bipartite graphs - Example

Algorithm: Maximum Matching Bipartite Graphs
Input: undirected bipartite graph

$$
G=(V, E)
$$

Output: maximum matching M
1 set $M=\emptyset$

2 construct G^{\prime}
3 while there exists s-t-path in G^{\prime} do 4 choose s-t-path P set $M=(M \backslash E(P)) \cup(E(P) \backslash M)$
6 update G^{\prime}

7 return M

Maximum matching bipartite graphs - Analysis

Algorithm: Maximum Matching Bi-
partite Graphs
Input: undirected bipartite graph

$$
G=(V, E)
$$

Output: maximum matching M
1 set $M=\emptyset$
2 construct G^{\prime}
3 while there exists s-t-path in G^{\prime} do
4 choose s-t-path P
5
6
7 return M

- $n=|V|, m=|E|$, no isolated nodes in G
- construction of G^{\prime} :

$$
O(n+m)
$$

- at most $\frac{n}{2}$ iterations
- finding $P: O(m)$
- updating $M: O(n)$
- updating $G^{\prime}: O(n)$
\Rightarrow total runtime $O(n m)$

Connection to MaxFlow

- solve maximum matching as maximum flow problem
- construct auxiliary directed graph $G^{\prime \prime}=\left(V^{\prime \prime}, E^{\prime \prime}\right)$ with

$$
\begin{aligned}
V^{\prime \prime}= & V \cup\{s, t\}, \quad s, t \notin V \\
E^{\prime \prime}= & \{(a, b):\{a, b\} \in E, a \in A, b \in B\} \\
& \cup\{(s, a): a \in A\} \\
& \cup\{(b, t): b \in B\}
\end{aligned}
$$

and capacity $u(e)=1$ for all $e \in E^{\prime \prime}$

- $G^{\prime \prime}$ has maximal flow with value k if and only
 if G has maximum matching of cardinality k

A
thank you

