Week VI

 $\forall (u, v) \in E$

 $\forall v \in V$

Overview

- ► Clique;
- ► Independent Set;
- Dominant Set:
- ► Hamiltonian Path;
- ► How to compare different NP-Problems?

Definitions

- **Clique** is a subset of nodes in a graph where every two nodes is adjacent.
- Independent Set is a subset of nodes in a graph where there is no any adjacency between two nodes.
- **Dominant Set** is a subset of nodes where each node is either part of the subset or adjacent to it.
- **Hamiltonian Path** is a path in a graph where every node is visited once.
- **Hamiltonian Cycle** is a cycle in a graph where every node is visited once.

Cliques

Fernando Dias

fernando.dias@aalto.fi

Combinatorial Optimization

Maximize $\sum_{v \in V} x_v$ Subject to: $x_u + x_v \leq 1$ $x_{v} \in \{0, 1\}$

$$\forall (u, v) \in \overline{E} \\ \forall v \in V$$

Independent Set

Maximize
$$\sum_{v \in V} x_{v}$$

Subject to:
 $x_{u} + x_{v} \leq 1$
 $x_{v} \in \{0, 1\}$

Hamiltonian Cycle

Overview

Require at least one extra constraint for subtour elimination;

either DFJ or MTZ (as examples);

▶ ${}^{*}b_{u} \in \{-1, 0, 1\};$ for all nodes $v \in V$ depending if they are a source, a sink or an intermediary nodes.

Dominant Set

Minin

Subje

 $x_v +$

 $x_v \in$

Hamiltonian Path

Subject to:

 $\sum_{uv} x_{uv} = 2$ $\sum_{(u,v)\in\delta^+(u)} x_{uv} \le 1$ $x_{uv} \in \{0, 1\}$

mize
$$\sum_{v \in V} x_v$$

ct to:
 $\sum_{u,v) \in E} x_u \ge 1$ $\forall v \in$
 $\{0, 1\}$ $\forall v \in$

V

V

 $\forall v \in V$

$\forall u \in V$ $\sum_{(uv)\in\delta^+(u)} x_{uv} - \sum_{(vu)\in\delta^-(u)} x_{uv} = b_u$ $\forall u \in V$ $\forall u \in V$

