Week VII

Overview

- Polynomial Transformation;
- SAT;
- Knapsack Problem;
- Clique vs Independent Set;
- TSP vs Hamiltonian Cycle;
- Independent Set vs Vertex Cover;
- ► 3-SAT vs Clique

Polynomial Transformation

Show it is in NP:

 \longrightarrow Verify that if a candidate solution is valid in polynomial time;

Show it is NP-Hard: \longrightarrow Reduce to a known NP-Complete problem.

Definition

SAT is the problem of deciding (requires a yes/no answer) if there is an assignment to the variables of a **Boolean** formula such that the formula is satisfied.

One of the first known NP problems.

Clique vs Independent Set

Clique and Independent Set Reduction:

- For a graph G = (V, E), build a complimentary graph G';
- For every $v \in V$, it creates another set of nodes $v \in V'$;
- Add an edge in G' for every edge not in G.

TSP vs Hamiltonian Cycle

TSP and Hamiltonian Cycle reduction:

- For a graph G = (V, E), build a complimentary graph G';
- For every pair of nodes (u, v) without an edge in G, add an edge in G'.
- If edge (u, v) exist in *G*, set the weight to zero, otherwise assign weight equal to one.

Independent Set and Vertex Cover

If *S* is an independent set, there is no edge $(u, v) \in G$, such that both v and u are in S. Therefore, either v or u has to be in V - S.

If V - S is a vertex cover, between any pair of nodes $u, v \in S$, the edge connecting them would **not exist** in V - S, otherwise it violates the definition of such vertex cover. Hence, no pair in S can be reached by a single edge, creating an independent set.

Remark: Independent Set of size *k* corresponds to a Vertex Cover of size V - |k|.

A 3-SAT is composed from three-literal clauses. The goal is to reduce a clique of size k in a group of kclauses ϕ .

- from the clause:
- $(x, \bar{x});$
- the same cluster.

Fernando Dias

fernando.dias@aalto.fi **Combinatorial Optimization**

2-SAT and Vertex Cover

• Building a graph G of k clusters with a **maximum** of 3 nodes in each cluster;

• Each cluster corresponds to a **clause** in ϕ ;

Each node in a cluster is **labeled with a literal**

An edge is put between all pairs of nodes in different cluster except for pairs of the form

No edge is put between any pair of nodes in

