${ }^{1}$ Department of Mathematics and Systems Analysis, Systems Analysis Laboratory, Aalto University, Finland

February 29, 2024

Aalto University

Previously on..

Combinatorial
Optimization

Previously on..
NP-
Completeness
Polynomial
transformation
Clique and Independent
Set
TSP and
Hamiltonian
Cycle
Independent
Set and
Vertex Cover
3-SAT to
Clique

- Clique problems;
- Cover problems;

PREVIOUSLY ON...

- Hamiltonian problems;

Also, all these problems can be easily "transformed" into each other. But how?

Pack a knapsack!

What about integer linear inequalities, (decision version of) knapsack etc. ?

Combinatorial
Optimization

Previously on: NP-
Completeness
Polynomial transformation

Clique and Independent Set

TSP and
Hamiltonian Cycle

Independent Set and
Vertex Cover
3-SAT to Clique

NP-Completeness

Combinatorial
Optimization

Previously on.

NP:
Completeness
Polynomial
transformation
Clique and Independent
Set
TSP and
Hamiltonian
Cycle
Independent
Set and
Vertex Cover
3-SAT to
Clique

Polynomial transformation

- $\left(X_{1}, Y_{1}\right)$ polynomially transforms to $\left(X_{2} Y_{2}\right)$ if there exists polynomial function $p_{1}: X_{1} \rightarrow X_{2}$ such that

$$
\begin{aligned}
& p_{1}\left(x_{1}\right) \in Y_{2} \quad \text { for all } x_{1} \in Y_{1} \text { and } \\
& p_{1}\left(x_{1}\right) \in X_{2} \backslash Y_{2} \quad \text { for all } x_{1} \in X_{1} \backslash Y_{1}
\end{aligned}
$$

- yes-instances are mapped to yes-instances, no-instances are mapped to no-instances
- $\left(X_{1}, Y_{1}\right)$ is at most as hard as $\left(X_{2}, Y_{2}\right)$
- for general polynomial function p_{2} : polynomial reduction

Combinatorial Optimization

Previously on. Completeness

Polynomial transformation

Clique and
Independent Set

TSP and
Hamiltonian Cycle

Independent Set and
Vertex Cover

NP-completeness

NP-completeness
$(X, Y) \in N P$ is called NP-complete if all other problems in NP polynomially transform to (X, Y).

- NP-complete problems are the "hardest" problems in NP;
- if one NP-complete problem is solvable in polynomial time, all are $(P=N P)$;
- Do NP-complete problems exist?

Satisfiability Problem (SAT)

literal: a binary variable, e.g. x, or its negation, e.g. $\neg x$
clause: a disjunction of literals, e.g.

$$
x_{1} \vee \neg x_{2}
$$

CNF: conjunctive normal form, a conjunction of disjunction, e.g.

$$
\left(x_{1} \vee \neg x_{2}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge \neg x_{4}
$$

SAT: satisfiability problem: Can a boolean formula, given as CNF, be satisfied?

Cook's Theorem

Theorem (Cook, 1971)
SAT is NP-complete.
Combinatorial
Optimization

Previously on.

Completeness

Polynomial transformation

Clique and Independent Set

TSP and
Hamiltonian Cycle

- many thousand problems have since been shown to be NP-complete
- Karp's original 21 NP-complete problems: Karp, R.M. (1975), On the complexity of combinatorial problems. Networks 5 (1975), 45-68

Integer linear programming

Theorem
Integer linear programming is NP-complete.
Proof.

Combinatorial
Optimization

Previously on.

Completeness
Polynomial transformation

Clique and
Independent Set

TSP and
Hamiltonian Cycle

Independent Set and
Vertex Cover

Remark: A problem that can be formulated as integer linear program is not

Knapsack problem

Partition
Decision version of knapsack problem
Instance: S multiset of positive integers. Instance: Items I with weight w_{i}, value Question: Can you partition S into $S_{1}, c_{i}, i \in I$, maximum weight B, minimum

Combinatorial Optimization

Previously on.

Completeness

Polynomial transformation

Clique and Independent Set

TSP and
Hamiltonian Cycle

- known to be NP-complete
value C.
Question: Can you find $I^{\prime} \subset I$ with

$$
\begin{aligned}
& \sum_{i \in I} w_{i} \leq B \\
& \sum_{i \in I} c_{i} \geq C ?
\end{aligned}
$$

- How can you show that knapsack is NP-complete?

Independent Set and
Vertex Cover

NP-hardness

Examples

- Problem \mathcal{P} is called NP-hard if all problems in NP polynomially reduce to \mathcal{P}.
\% \mathcal{P} not necessarily in NP
- (optimization version of) knapsack
- multi-commodity flows
- traveling salesperson problem
- uncapacitated facility location

NP, NP-Complete and NP-Hard

The difference between all three:

- NP: It is the collection of decision problems that can be solved by a non-deterministic machine in polynomial time.
- NP-Hard: An NP-hard problem is at least as hard as the hardest problem in NP and it is a class of problems such that every problem in NP reduces to NP-hard.
- NP-Complete: A problem is NP-complete if it is both NP and NP-hard. NP-complete problems are the hard problems in NP.

Completeness

Polynomial transformation

Clique and Independent Set

TSP and

$P \neq N P ?$

- showing whether $P=N P$ or $P \neq N P$ is one of the Millennium Prize Problems
- most scientist believe that $P \neq N P$
- $P=N P$ would have large influences on the (cyber) security of cryptography

Combinatorial Optimization

Previously on.

Completeness

Polynomial
transformation
Clique and
Independent
Set
TSP and
Hamiltonian
Cycle
Independent
Set and
Vertex Cover
3-SAT to
Clique

$P \neq N P ?$

A

Combinatorial
Optimization

Previously on.

Figure: Question of the millennium?

Polynomial

transformation
Clique and
Independent
Set
TSP and
Hamiltonian
Cycle
Independent
Set and
Vertex Cover
3-SAT to
Clique

Polynomial transformation

```
Combinatorial
    Optimization
Previously on.
NP-
Completeness
Polynomial
transformation
Clique and
Independent
Set
TSP and
Hamiltonian
Cycle
Independent
Set and
Vertex Cover
3-SAT to
Clique

\section*{Recipe to prove that a problem is NP}
- Show it is in NP:

Verify that if a candidate solution is valid in polynomial time;
- Show it is NP-Hard:

Reduce to a known NP-Complete problem.

With these two steps, a novel problem can be considered a NP-Complete problem.

\section*{Clique and Independent Set}
```

Combinatorial
Optimization
Previously on.
NP-
Completeness
Polynomial
transformation
Clique and
Independent
Set
TSP and
Hamiltonian
Cycle
Independent
Set and
Vertex Cover
3-SAT to
Clique

Definition

Knowing that both clique and independent set are NP-Complete, there is a simple transformation between them:

Clique and Independent Set Reduction:

Polynomial

- For every $v \in V$, it creates another set of nodes $v \in V^{\prime}$;
- Add an edge in G^{\prime} for every edge not in G.

Remark: Complimentary graph can be calculated in polynomial time.

Building Example

Combinatorial
Optimization

Previously on.
NP-
Completeness
Polynomial
transformation
cique and
Independent

Figure: G and complimentary G^{\prime}

Independent

Set and
Vertex Cover
3-SAT to
Clique

Polynomial Reduction

If there is an independent set of size k in the complement graph G^{\prime}, no two nodes share an edge in G^{\prime}. Hence, all of those edges share an edge in G forming a clique of size k.

If there is a clique of size k in the graph G, all nodes share an edge in G implying that there is no two nodes share an edge in G^{\prime}. Hence, all of those edges share an edge in G^{\prime} forming an independent set of size k.

TSP and Hamiltonian Cycle

Combinatorial
Optimization
Previously on
NP-
Completeness
Polynomial
transformation
Clique and Independent
Set

TSP and
Hamiltonian Cycle

Independent

Set and
Vertex Cover
3-SAT to
Clique

Definition

Both problem are related to find a cycle.

TSP and Hamiltonian Cycle reduction:

- For a graph $G=(V, E)$, build a complimentary graph G^{\prime};
- For every pair of nodes (u, v) without an edge in G, add an edge in G^{\prime}.
- If edge (u, v) exist in G, set the weight to zero, otherwise assign weight equal to one.

Combinatorial Optimization

Previously on.

NP

Completeness
Polynomial
transformation
Clique and
Independent
Set
TSP and
Hamiltonian
Cycle
Independent Set and
Vertex Cover
3-SAT to Clique

Building Example

Combinatorial
Optimization

Previously on..
NP
Completeness
Polynomial
transformation
Clique and
Independent
Set

TSP and
Hamiltonian Cycle

Independent

Set and
Vertex Cover
3-SAT to
Clique

Polynomial Reduction

The graph G has a Hamiltonian cycle if there is a cycle in G^{\prime} passing through all nodes only once with combined weight equal to zero.

If the cycle passes through all nodes and the combined weight is zero, it means that the cycle only contains edges present in G. Hence, a Hamiltonian cycle exists in G.

If there is a Hamiltonian cycle in G, it also forms a cycle in G^{\prime} with combined weight equal to zero. Hence, a solution for TSP exists in G^{\prime}.

ISP and

Independent Set and Vertex Cover

Combinatorial
Optimization

Previously on.
NP-
Completeness
Polynomial
transformation
Clique and Independent
Set
TSP and
Hamiltonian
Cycle
Independent

Definition

Both problems can be traced to covering problems.

If a graph G has an independent set S, it also has a vertex cover $V-S$.

```
Combinatorial
    Optimization
Previously on
NP
Completeness
Polynomial
transformation
```

Clique and
Independent
Set
TSP and
Hamiltonian
Cycle

Polynomial Reduction

If S is an independent set, there is no edge $(u, v) \in G$, such that both v and u are in S. Therefore, either v or u has to be in $V-S$.

If $V-S$ is a vertex cover, between any pair of nodes $u, v \in S$, the edge connecting them would not exist in $V-S$, otherwise it violates the definition of such vertex cover. Hence, no pair in S can be reached by a single edge, creating an independent set.

Remark: Independent Set of size k corresponds to a Vertex Cover of size $V-|k|$.

Previously on

Completeness
Polynomial transformation

Clique and

3-SAT to Clique

Combinatorial
Optimization

Previously on.
NP-
Completeness
Polynomial
transformation
Clique and Independent
Set
TSP and
Hamiltonian
Cycle
Independent
Set and
Vertex Cover
3-SAT to
Clique

Definition

A 3-SAT is composed from three-literal clauses. The goal is to reduce a clique of size k in a group of k clauses ϕ.

- Building a graph G of k clusters with a maximum of 3 nodes in each cluster;
- Each cluster corresponds to a clause in ϕ;
- Each node in a cluster is labeled with a literal from the clause;
- An edge is put between all pairs of nodes in different cluster except for pairs of the form (x, \bar{x});
- No edge is put between any pair of nodes in the same cluster.

Building Example

Given the following clause:

$$
\phi=\left(x_{2}+x_{1}+\bar{x}_{3}\right)\left(\bar{x}_{1}+\bar{x}_{2}+x_{4}\right)\left(x_{2}+\bar{x}_{4}+x_{3}\right)
$$

Figure: 3-SAT to clique

Combinatorial
Optimization

Previously on..
NP-
Completeness
Polynomial
transformation
Clique and
Independent
Set
TSP and
Hamiltonian
Cycle
Independent
Set and
Vertex Cover
3-SAT to
Clique

Building Example

Combinatorial Optimization

Previously on.
If two nodes are connected, it means that the literal can be simultaneously true.

If two literals, not in the same clause can be assigned true simultaneously; hence, the nodes are also connected.

Completeness
Polynomial
transformation
Clique and
Independent
Set
TSP and
Hamiltonian
Cycle
Independent
Set and
Vertex Cover
3-SAT to
Clique

Polynomial Reduction

G has k-size clique, if ϕ is satisfiable.

If G has a clique of size k, the clique has exactly one node in from each cluster. Hence, all corresponding literals can be assigned true with each literal belong to an individual k clauses. Then, ϕ is satisfiable.

If ϕ is satisfiable, there is a combination of nodes corresponding to it. Let the set of nodes be A. From each clause, there are some literals that are true, that there are also in A. Remembering that two literals cannot be from the same clause, a clique can be formed by connecting a single node from each clause forming a clique.

A
thank you

